Net wor k Wor ki ng Group D. Crockford
Request for Comments: 4627 JSON. org
Cat egory: I nfornmational July 2006

The application/json Media Type for JavaScript Object Notation (JSON)

Status of This Meno
This meno provides information for the Internet conmunity. |t does
not specify an Internet standard of any kind. Distribution of this
meno is unlimted.

Copyright Notice
Copyright (C) The Internet Society (2006).

Abstract
JavaScript Cbject Notation (JSON) is a |Iightweight, text-based,
| anguage-i ndependent data interchange format. It was derived from
the ECVMAScri pt Programmi ng Language Standard. JSON defines a smnal
set of formatting rules for the portable representation of structured
dat a.

1. Introduction
JavaScript Cbject Notation (JSON) is a text format for the
serialization of structured data. It is derived fromthe object
literals of JavaScript, as defined in the ECMAScri pt Progranmm ng
Language Standard, Third Edition [ECVA].

JSON can represent four primtive types (strings, nunbers, bool eans,
and null) and two structured types (objects and arrays).

A string is a sequence of zero or nore Unicode characters [UN CODE].
An object is an unordered collection of zero or nore namne/val ue
pairs, where a nane is a string and a value is a string, nunber,
bool ean, null, object, or array.

An array is an ordered sequence of zero or nore val ues.

The terns "object” and "array" cone fromthe conventions of
JavaScri pt.

JSON' s design goals were for it to be mininmal, portable, textual, and
a subset of JavaScri pt.

Crockford | nf or mat i onal [Page 1]

RFC 4627 JSON July 2006

1.1. Conventions Used in This Docunent
The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMVENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in [RFC2119].

The granmmatical rules in this docunent are to be interpreted as
described in [RFC4234].

2. JSON G anmar

A JSON text is a sequence of tokens. The set of tokens includes six
structural characters, strings, nunbers, and three literal nanes.

A JSON text is a serialized object or array.
JSON-text = object / array

These are the six structural characters:

begi n-array =ws W5B ws ; [left square bracket
begi n- obj ect =ws W7Bws ; { left curly bracket
end- arr ay =ws W5D ws ;] right square bracket
end- obj ect =ws W7D ws ; } right curly bracket
name-separator = ws %3A ws ; : colon

val ue-separator = ws W2C ws ; , conmmm

I nsignificant whitespace is allowed before or after any of the six
structural characters.

ws = *(
%20 / ; Space
%09 / : Horizontal tab
9% 0A / : Line feed or New |ine
% 0D ; Carriage return
)

2.1. Val ues

A JSON val ue MUST be an object, array, nunber, or string, or one of
the following three literal nanes

false null true

Crockford | nf or mat i onal [Page 2]

RFC 4627 JSON July 2006

The literal nanmes MJST be | owercase. No other literal nanmes are

al | owed.
value = false / null / true / object / array / number / string
fal se = %66.61. 6¢. 73. 65 ; fal se
null = %6e.75. 6¢C. 6C ; nul
true = 9%74.72.75.65 ; true

2.2. ojects

An object structure is represented as a pair of curly brackets
surroundi ng zero or nore nane/value pairs (or nenbers). Anane is a
string. A single colon comes after each name, separating the nane
fromthe value. A single conma separates a value froma follow ng
nane. The names within an object SHOULD be uni que.

obj ect = begi n-object [nmenber *(val ue-separator nenber)]
end- obj ect

menber = string name-separator val ue
2.3. Arrays

An array structure is represented as square brackets surrounding zero
or nore values (or elenents). Elenents are separated by conmas.

array = begin-array [value *(val ue-separator value)] end-array
2.4. Nunbers

The representation of nunbers is simlar to that used in nost
progranmm ng | anguages. A nunber contains an integer conponent that
may be prefixed with an optional m nus sign, which may be foll owed by
a fraction part and/or an exponent part.
Cctal and hex forms are not allowed. Leading zeros are not all owed.
A fraction part is a decimal point followed by one or nore digits.
An exponent part begins with the letter E in upper or |owercase,
whi ch may be followed by a plus or mnus sign. The E and optiona
sign are followed by one or nore digits.

Nuneri c val ues that cannot be represented as sequences of digits
(such as Infinity and NaN) are not pernitted.

Crockford I nf or mat i onal [Page 3]

RFC 4627 JSON July 2006

2.

5.

nunber = [minus] int [frac] [exp]
deci mal - poi nt = %2E :

digitl-9 = %31-39 ; 1-9

e = %65 / %45 ; e E

exp =e [minus / plus] 1*DAT

frac = decimal-point 1*DIA T

int =zero/ (digitl-9 *DGAT)

m nus = %2D i

pl us = %2B T+
zero = %30 0
Strings

The representation of strings is simlar to conventions used in the C
fam ly of programm ng | anguages. A string begins and ends with
guotation marks. Al Unicode characters nmay be placed within the
quot ati on marks except for the characters that nust be escaped:
qgquotati on mark, reverse solidus, and the control characters (U+0000

t hr ough U+001F).

Any character may be escaped. |If the character is in the Basic

Mul tilingual Plane (W+0000 through WFFFF), then it may be
represented as a si x-character sequence: a reverse solidus, foll owed
by the lowercase letter u, foll owed by four hexadeciml digits that
encode the character’s code point. The hexadecimal letters A though
F can be upper or |lowercase. So, for exanple, a string containing
only a single reverse solidus character may be represented as
"\'u005C".

Alternatively, there are two-character sequence escape
representations of sone popul ar characters. So, for exanple, a
string containing only a single reverse solidus character may be
represented nore conpactly as "\\".

To escape an extended character that is not in the Basic Miltilingual
Pl ane, the character is represented as a twel ve-character sequence,
encodi ng the UTF-16 surrogate pair. So, for exanple, a string
containing only the G clef character (U+1D11E) may be represented as
"\ uD834\ ubDD1E".

Crockford I nf or mat i onal [Page 4]

RFC 4627 JSON July 2006

3.

string = quotation-mark *char quotation-mark

char = unescaped /

escape (
w22 / ;" quotati on mark W+0022
wW5C / ;o\ reverse solidus W005C
W 2F / po sol i dus U+002F
w62 / ;b backspace U+0008
%x66 / ;o f form feed U+000C
U 6E / ;n line feed U+000A
W72 |/ ;T carriage return U000D
w74 |/ pot tab U+0009
%75 A4HEXDI G) ; uXXXX U+ XXXX

—

escape = %&5C ;

quot ati on-mark = %22 ;"

unescaped = %?20-21 / %23-5B / 9%5D 10FFFF
Encodi ng

JSON text SHALL be encoded in Unicode. The default encoding is
UTF- 8.

Since the first two characters of a JSON text will always be ASCl |
characters [RFC0020], it is possible to determ ne whether an octet
streamis UTF-8, UTF-16 (BE or LE), or UTF-32 (BE or LE) by I ooking
at the pattern of nulls in the first four octets.

00 00 00 xx UTF-32BE
00 xx 00 xx UTF-16BE
xx 00 00 00 UTF-32LE
xX 00 xx 00 UTF-16LE
XX XX XX XX UTF-8

Par sers

A JSON parser transfornms a JSON text into another representation. A
JSON parser MJST accept all texts that conformto the JSON gramar.
A JSON parser MAY accept non-JSON forns or extensions.

An inplementation may set limts on the size of texts that it

accepts. An inplenentation may set limts on the nmaxi nrum depth of
nesting. An inplenmentation may set limts on the range of nunbers.
An inplementation may set limts on the length and character contents
of strings.

Crockford I nf or mat i onal [Page 5]

RFC 4627 JSON July 2006

5. CGenerators

A JSON generator produces JSON text. The resulting text MJST
strictly conformto the JSON granmmar.

6. | ANA Consi derations

The M ME nedia type for JSON text is application/json

Type nane: application

Subt ype nane: json

Requi red paraneters: n/a

Optional paraneters: n/a

Encodi ng considerations: 8bit if UTF-8; binary if UTF-16 or UTF-32
JSON nay be represented using UTF-8, UTF-16, or UTF-32. When JSON
is witten in UTF-8, JSON is 8bit conpatible. Wen JSONis
witten in UTF-16 or UTF-32, the binary content-transfer-encoding
nmust be used.

Security considerations:

CGenerally there are security issues with scripting | anguages. JSON

is a subset of JavaScript, but it is a safe subset that excludes

assi gnnment and invocati on.

A JSON text can be safely passed into JavaScript’'s eval () function

(which compil es and executes a string) if all the characters not

enclosed in strings are in the set of characters that form JSON

tokens. This can be quickly determ ned in JavaScript with two
regul ar expressions and calls to the test and repl ace nethods.

var nmy_JSON object = !(/[™, :{}\]
text.replace(/"(\\.|[~"\\
eval (" (" + text +)");

\]0-9.\-+Eaeflnr-u \n\r\t]/.test(
*"lg, 7)) &&

I nteroperability considerations: n/a

Publ i shed specification: RFC 4627

Crockford I nf or mat i onal [Page 6]

RFC 4627 JSON July 2006

Applications that use this nedia type:
JSON has been used to exchange data between applications witten
in all of these programmi ng | anguages: ActionScript, C, C#,

Col dFusi on, Conmon Lisp, E, Erlang, Java, JavaScript, Lua,
bj ective CAM., Perl, PHP, Python, Rebol, Ruby, and Schene.

Addi tional information:
Magi ¢ nunber(s): n/a
File extension(s): .json
Maci ntosh file type code(s): TEXT
Person & email address to contact for further infornmation:
Dougl as Crockford
dougl as@r ockf ord. com
I nt ended usage: COMVON
Restrictions on usage: none
Aut hor:
Dougl as Crockford
dougl as@r ockf ord. com
Change controller:
Dougl as Crockford
dougl as@r ockf ord. com
7. Security Considerations
See Security Considerations in Section 6.

8. Exanpl es

This is a JSON obj ect:

{
"I mage": {

"Wdth": 800,

"Hei ght": 600,

"Title": "View from 15th Fl oor",

"Thunbnai | ": {
Ul "http://ww. exanpl e. coml i mage/ 481989943"
"Hei ght": 125,
"Wdth": "100"

}

"IDs": [116, 943, 234, 38793]

Crockford I nf or mat i onal [Page 7]

RFC 4627

}

JSON July 2006

Its I mage nenber is an object whose Thunbnail nenber is an object

and wh
Thi s i

[

]
9. Refere

9.1. Nor

[ECVA]

ose | Ds nenber is an array of nunbers.

s a JSON array containing two objects:

"precision": "zip",
"Latitude": 37.7668,
"Longi tude": -122.3959,

" Addr ess": .

"City": "SAN FRANCI SCO',
"State": "CA",

"Zip": "94107",
"Country": "Us"
"precision": "zip",

"Latitude": 37.371991
"Longi tude": -122.026020,

" Addr ess": .

"Gty": " SUNNYVALE"
"State": "CA",

"Zip": "94085",
"Country": " uUs"

nces

mati ve Ref erences

Eur opean Conputer Manufacturers Associ ation, "ECMAScri pt
Language Specification 3rd Edition", Decenber 1999,
<http://ww. ecma-international.org/publications/files/
ecma- st/ ECVA- 262. pdf >.

[RFC0020] Cerf, V., "ASCI| format for network interchange", RFC 20,

[RFC21

[RFCA2

Crockford

Oct ober 1969.

19] Bradner, S., "Key words for use in RFCs to Indicate
Requi rement Level s", BCP 14, RFC 2119, March 1997

34] Crocker, D. and P. Overell, "Augnmented BNF for Syntax
Speci fications: ABNF', RFC 4234, Cctober 2005.
I nf or mat i onal [Page 8]

RFC 4627 JSON July 2006
[UNI CODE] The Uni code Consortium "The Unicode Standard Version 4.0",
2003, <http://wwv. uni code. or g/ versi ons/ Uni code4. 1. 0/ >.
Aut hor’ s Addr ess
Dougl as Crockford

JSON. org
EMai | : dougl as@r ockford. com

Crockford I nf or mat i onal [Page 9]

RFC 4627 JSON July 2006

Ful I Copyright Statenent
Copyright (C The Internet Society (2006).

This docunent is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

Thi s docunent and the information contained herein are provided on an
"AS | S" basis and THE CONTRI BUTOR, THE ORGANI ZATI ON HE/ SHE REPRESENTS
OR I'S SPONSORED BY (IF ANY), THE I NTERNET SOCI ETY AND THE | NTERNET
ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS OR | MPLI ED

| NCLUDI NG BUT NOT LIMTED TO ANY WARRANTY THAT THE USE COF THE

| NFORVATI ON HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intell ectual Property Rights or other rights that m ght be clained to
pertain to the inplenentation or use of the technol ogy described in
this docunent or the extent to which any |icense under such rights

m ght or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. |Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of IPR disclosures nmade to the | ETF Secretariat and any
assurances of licenses to be nmade available, or the result of an
attenpt nmade to obtain a general |icense or permission for the use of
such proprietary rights by inplenmenters or users of this

speci fication can be obtained fromthe | ETF on-line |IPR repository at
http://ww.ietf.org/ipr.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that nmay cover technol ogy that nay be required to inplenment
this standard. Please address the information to the |IETF at
ietf-ipr@etf.org.

Acknow edgenent

Funding for the RFC Editor function is provided by the | ETF
Adm ni strative Support Activity (1ASA).

Crockford | nf or mat i onal [Page 10]

