Net wor k Wor ki ng Group D. Thal er

Request for Comments: 3678 M crosoft
Cat egory: I nfornmational B. Fenner
AT&T Research

B. Quinn

St ar dust. com
January 2004

Socket Interface Extensions for Miulticast Source Filters
Status of this Meno

This meno provides information for the Internet conmmunity. |t does
not specify an Internet standard of any kind. Distribution of this
meno is unlimted.

Copyright Notice
Copyright (C) The Internet Society (2004). Al Rights Reserved.
Abstract

The I nternet G oup Managenent Protocol (1Gwv3) for |1Pv4 and the
Mul ticast Listener Discovery (M.Dv2) for I Pv6 add the capability for
applications to express source filters on nulticast group

menber shi ps, which allows receiver applications to determ ne the set
of senders (sources) fromwhich to accept nulticast traffic. This
capability also sinplifies support of one-to-many type multicast
appl i cati ons.

Thi s docunent specifies new socket options and functions to nanage
source filters for IP Milticast group nmenberships. It also defines
the socket structures to provide input and output argunents to these
new application programinterfaces (APIs). These extensions are
designed to provide access to the source filtering features, while

i ntroduci ng a m ni mum of change into the system and providi ng

conpl ete conpatibility for existing multicast applications.

Tabl e of Contents

1. Introduction . .o

2. Design Considerations. . . .
2.1 What Needs to be Added .
2.2 Data Types .
2. 3 Headers.
2.4 Structures .

3. Overview of APIs.

OabhrbhbbbwN

Thal er, et al. I nf or mat i onal [Page 1]

RFC 3678 Mul ti cast Source Filter API

4.

9.

10.
11.
12.

| Pv4 Multicast Source Filter APIs . .
4.1 Basic (Delta-based) APl for |Pv4. . .
4.1.1 | Pv4 Any-Source Multicast API. . .
4.1.2 |1 Pv4 Source-Specific Milticast API
4.1.3 Error Codes.
4.2 Advanced (Full-state) APl for |Pv4.
4.2.1 Set Source Filter. .
4.2.2 Get Source Filter. . .
Prot ocol - I ndependent Ml ti cast Source Fllter APIs :
5.1 Basic (Delta-based) APl . . .
5.1.1 Any-Source Milticast API Co
5.1.2 Source-Specific Milticast API.
5.2 Advanced (Full-state) API .
5.2.1 Set Source Filter.
5.2.2 Get Source Filter.
Security Considerations.
Acknow edgmnent s.

Appendi x A: Use of ioéti(j fo; fuillsfafe.obe;afibné :

8.1. IPv4 Options.

8. 2. Protocol-lndependent Cptlons
Normati ve Ref erences . .o
| nformati ve References

Aut hors’ Addresses . .

Ful I Copyri ght Statenent

1. Introduction

January 2004

OO ~NNOO®

The de facto standard application programinterface (API) for TCP/IP
applications is the "sockets" interface. Although this APl was

devel oped for

a wide variety of non-Unix systens. TCP/IP applications
ng the sockets APl have in the past enjoyed a high degree of
portability and we would |ike the sane portability with applications

usi

that enploy multicast source filters.
sockets API

changes.

Unix in the early 1980s it has al so been inplenented on

witten

Changes are required to the
to support such filtering and this nmenpo describes these

Thi s docunent specifies new socket options and functions to nanage
source filters for IP Milticast group nmenberships. It also defines
the socket structures to provide input and output argunents to these

new API s.

These extensions are designed to provide access to the

source filtering features required by applications, while introducing

a mni mum of change into the system and providi ng conplete
conmpatibility for existing nulticast applications.

Fur

Thal er,

thermore, RFC 3493 [1] defines socket interface extensions for
| Pv6, including protocol-i ndependent functions for npbst operations.

et al. | nf or mat i onal

[Page 2]

RFC 3678 Mul ticast Source Filter API January 2004

However, while it defines join and | eave functions for IPv6, it does
not provi de protocol -i ndependent versions of these operations. Such
functions will be described in this docunent.

The reader should note that this docunent is for infornational
purposes only, and that the official standard specification of the
sockets APl is [2].

2. Design Considerations

There are a nunber of inportant considerations in designing changes
to this well-worn API:

o The APl changes shoul d provide both source and binary
conpatibility for prograns witten to the original API. That
is, existing program binaries should continue to operate when
run on a system supporting the new API. |In addition, existing
applications that are re-conpiled and run on a system
supporting the new APl should continue to operate. Sinply put,
the APl changes for nulticast receivers that specify source
filters should not break existing prograns.

0o The changes to the APl should be as small as possible in order
to sinmplify the task of converting existing nulticast receiver
applications to use source filters.

o Applications should be able to detect when the new source
filter APls are unavailable (e.g., calls fail with the ENOISUPP
error) and react gracefully (e.g., revert to old non-source-
filter APl or display a neaningful error nessage to the user).

0 Lack of type-safety in an APl is a bad thing which should be
avoi ded when possi bl e.

Several inplenmentations exist that use ioctl() for a portion of the
functionality described herein, and for historical purposes, the
ioctl APl is docunented in Appendix A. The preferred APlI, however,
i ncl udes new functions. The reasons for adding new functions are:

o New functions provide type-safety, unlike ioctl, getsockopt,
and set sockopt.

o0 A new function can be witten as a wapper over an ioctl,
get sockopt, or setsockopt call, if necessary. Hence, it
provides nore freedomas to how the functionality is
i npl emented in an operating system For exanple, a new
function mght be inplenmented as an inline function in an

Thal er, et al. I nf or mat i onal [Page 3]

RFC 3678 Mul ticast Source Filter API January 2004

include file, or a function exported froma user-node library
which internally uses sone nechani smto exchange information
with the kernel, or be inplenented directly in the kernel.

0 At |east one operation defined herein needs to be able to both
pass information to the TCP/IP stack, as well as retrieve
information fromit. |In sone inplenentations this is
probl ematic without either changi ng getsockopt or using ioctl.
Usi ng new functions avoids the need to change such
i npl enent ati ons.

2.1. \What Needs to be Added

The current IP Multicast APIs allow a receiver application to specify
the group address (destination) and (optionally) the local interface.
These existing APl s need not change (and cannot, to retain binary
conpatibility). Hence, what is needed are new source filter APls
that provide the sanme functionality and also allow receiver nulticast
applications to:

0 Specify zero or nore unicast (source) address(es) in a source
filter.

o Determ ne whether the source filter describes an inclusive or
exclusive list of sources.

The new APl design nust enable this functionality for both IPv4 and
| Pv6.

2.2. Data Types

The data types of the structure elenents given in this nmeno are

i ntended to be exanpl es, not absolute requirenments. Wenever
possi bl e, data types from PCSI X 1003.1g [2] are used: uintN_t means
an unsigned integer of exactly N bits (e.g., uint32_t).

2.3. Headers

When function prototypes and structures are shown, we show the
headers that must be #included to cause that itemto be defined.

2. 4. Structures
When structures are described, the menbers shown are the ones that

nmust appear in an inplenentation. Additional, nonstandard nenbers
may al so be defined by an inplenentation. As an additional

Thal er, et al. I nf or mat i onal [Page 4]

RFC 3678 Mul ticast Source Filter API January 2004

precaution, nonstandard nmenbers could be verified by Feature Test
Macros as described in [2]. (Such Feature Test Macros are not
defined by this RFC.)

The ordering shown for the nenbers of a structure is the recomended
ordering, given alignnment considerations of nultibyte nenbers, but an
i npl erentation may order the nenbers differently.

3. Overview of APIs

There are a nunber of different APIs described in this docunment that
are appropriate for a nunber of different application types and IP
versions. Before providing detail ed descriptions, this section
provi des a "taxonony" with a brief description of each

There are two categories of source-filter APls, both of which are
designed to allow nulticast receiver applications to designhate the
uni cast address(es) of sender(s) along with the nulticast group
(destination address) to receive.

0 Basic (Delta-based): Sonme applications desire the sinplicity of
a delta-based APl in which each function call specifies a
singl e source address which should be added to or renoved from
the existing filter for a given nulticast group address on
which to listen. Such applications typically fall into either
of two categories:

+ Any-Source Miulticast: By default, all sources are accepted.
I ndi vi dual sources may be turned of f and back on as needed
over time. This is also known as "exclude" node, since the
source filter contains a list of excluded sources.

+ Source-Specific Miulticast: Only sources in a given list are
all oned. The list may change over time. This is also known
as "include" node, since the source filter contains a |ist
of included sources.

This APl woul d be used, for exanple, by "single-source"
appli cations such as audi o/ vi deo broadcasting. It would
al so be used for logical nulti-source sessions where each
source independently allocates its own Source-Specific
Mul ticast group address.

0 Advanced (Full-state): This APl allows an application to define

a conplete source-filter conprised of zero or nobre source
addresses, and replace the previous filter with a new one.

Thal er, et al. I nf or mat i onal [Page 5]

RFC 3678 Mul ticast Source Filter API January 2004

Applications which require the ability to switch between filter
nmodes without |eaving a group nmust use a full-state APl (i.e.,

to change the semantics of the source filter frominclusive to
excl usive, or vice versa).

Applications which use a |large source list for a given group
address should al so use the full-state APlI, since filter
changes can be done atomcally in a single operation.

The above types of APlIs exist in IPv4-specific variants as well as
wi th protocol -i ndependent variants. One might ask why the protocol -
i ndependent APl s cannot accommobdate | Pv4 applications as well as

| Pv6. Since any |Pv4 application requires nodification to use

mul ticast source filters anyway, it might seemlike a good
opportunity to create | Pv6-conpatible source code.

The primary reasons for extending an | Pv4-specific APl are:

o To mnimze changes needed in existing | Pv4 multicast
application source code to add source filter support.

o To avoid overloading APls to accommpdate the differences
between I Pv4 interface addresses (e.g., in the ip_nreq
structure) and interface indices.

4. | Pv4d Multicast Source Filter APls

Version 3 of the Internet G oup Managenent Protocol (1GwWv3) [3] and
version 2 of the Miulticast Listener Discovery (MDv2) protocol [4]
provide the ability to conmmunicate source filter information to the
router and hence avoid pulling down data from unwanted sources onto
the local link. However, source filters nay be inplenented by the
operating system regardl ess of whether the routers support | GWv3 or
M_.Dv2, so when the source-filter APl is available, applications can
al ways benefit fromusing it.

4.1. Basic (Delta-based) APl for |Pv4
The reception of multicast packets is controlled by the setsockopt()

options sunmmari zed below. An error of EOPNOTSUPP is returned if
t hese options are used with getsockopt().

Thal er, et al. I nf or mat i onal [Page 6]

RFC 3678 Mul ticast Source Filter API January 2004
The followi ng structures are used by both the Any-Source Milticast
and the Source-Specific Milticast API:

#i ncl ude <netinet/in.h>
struct ip_nreq {

struct in_addr inr_rultiaddr; /*
struct in_addr inr_interface; /*

address of group */
address of interface */

T T

b

struct ip_nreq_source {
struct in_addr inr_nultiaddr;
struct in_addr inr_sourceaddr
struct in_addr inr_interface;

address of group */
address of source */
address of interface */

~~
* 0 X
T TTDO

3
4.1.1. 1Pv4 Any-Source Milticast API

The follow ng socket options are defined in <netinet/in.h> for
applications in the Any-Source Milticast category:

Socket option Argunent type
| P_ADD MEMBERSHI P struct ip_nreq
| P_BLOCK SOURCE struct ip_nreqg_source
| P_UNBLOCK SOURCE struct ip_nreqg_source
| P_DROP_MEMBERSHI P struct ip_nreq

| P_ADD_MEMBERSHI P and | P_DROP_VMEMBERSHI P are al ready i npl enented on
nost operating systenms, and are used to join and | eave an any-source
gr oup.

| P_BLOCK_SOURCE can be used to block data froma given source to a
given group (e.g., if the user "nutes" that source), and

| P_UNBLOCK_SOURCE can be used to undo this (e.g., if the user then
"unmnut es" the source).

4.1.2. |1Pv4 Source-Specific Milticast API

The foll owi ng socket options are available for applications in the
Sour ce- Speci fi c category:

Socket option Argurent type
| P_ADD SOURCE_MEMBERSHI P struct ip_nreqg_source
| P_DROP_SOURCE_MEMBERSHI P struct ip_nreqg_source
| P_DROP_MEMBERSHI P struct ip_nreq

| P_ADD_SOURCE_MEMBERSHI P and | P_DROP_SOURCE_MEMBERSHI P are used to
join and | eave a source-specific group

Thal er, et al. I nf or mat i onal [Page 7]

RFC 3678 Mul ticast Source Filter API January 2004

| P_DROP_MEMBERSHI P i s supported, as a convenience, to drop al
sour ces whi ch have been joined for a particular group and interface.
The operations are the same as if the socket had been cl osed.

4.1.3. Error Codes
When the option would be legal on the group, but an address is
invalid (e.g., when trying to block a source that is already bl ocked
by the socket, or when trying to drop an unjoi ned group) the error
generated i s EADDRNOTAVAI L.
When the option itself is not |legal on the group (i.e., when trying a
Sour ce-Specific option on a group after doing | P_ADD MEMBERSHI P, or
when trying an Any-Source option w thout doing | P_ADD MEMBERSH P) the
error generated i s EI NVAL.

When any of these options are used with getsockopt(), the error
generated i s EOPNOTSUPP

Finally, if the inplenmentation inposes a limt on the maxi num nunber
of sources in a source filter, ENOBUFS is generated when an operation
woul d exceed the maxi mum
4.2. Advanced (Full-state) APl for |Pv4
Several inplenmentations exist that use ioctl() for this APlI, and for
hi storical purposes, the ioctl() APl is docunented in Appendi x A
The preferred APl uses the new functions described bel ow.
4.2.1. Set Source Filter
#i ncl ude <netinet/in.h>
int setipvdsourcefilter(int s, struct in_addr interface,
struct in_addr group, uint32_t fnode,
uint32_t numsrc, struct in_addr *slist);

On success the value 0 is returned, and on failure, the value -1 is
returned and errno is set accordingly.

The s argunent identifies the socket.
The interface argunent holds the local I P address of the interface.

The group argunent holds the IP nulticast address of the group

Thal er, et al. I nf or mat i onal [Page 8]

RFC 3678 Mul ticast Source Filter API January 2004

The fnode argunent identifies the filter node. The value of this
field nmust be either MCAST_| NCLUDE or MCAST_EXCLUDE, which are
i kewi se defined in <netinet/in.h>

The nunsrc argunment hol ds the nunber of source addresses in the slist
array.

The slist argunment points to an array of |IP addresses of sources to
i ncl ude or exclude depending on the filter node.

If the inplenmentation inposes a limt on the nmaxi mum nunber of
sources in a source filter, ENOBUFS is generated when the operation
woul d exceed the maxi mum

4.2.2. Get Source Filter
#i ncl ude <netinet/in.h>
int getipv4sourcefilter(int s, struct in_addr interface,
struct in_addr group, uint32_t *fnode,

uint32_t *nunsrc, struct in_addr *slist);

On success the value 0 is returned, and on failure, the value -1 is
returned and errno is set accordingly.

The s argunent identifies the socket.
The interface argunent holds the local |IP address of the interface.
The group argument holds the IP nmulticast address of the group

The fnode argunment points to an integer that will contain the filter
node on a successful return. The value of this field will be either
MCAST _| NCLUDE or MCAST_EXCLUDE, which are |ikew se defined in
<netinet/in. h>,

On input, the nunsrc argunent holds the nunber of source addresses
that will fit in the slist array. On output, the nunsrc argunent
will hold the total nunmber of sources in the filter.

The slist argunment points to buffer into which an array of IP
addresses of included or excluded (depending on the filter node)
sources will be witten. |If numsrc was O on input, a NULL pointer
may be suppli ed.

Thal er, et al. I nf or mat i onal [Page 9]

RFC 3678 Mul ticast Source Filter API January 2004

If the application does not know the size of the source |ist

bef orehand, it can make a reasonabl e guess (e.g., 0), and if upon
conpl etion, nunsrc holds a larger value, the operation can be
repeated with a | arge enough buffer.

That is, on return, nunsrc is always updated to be the total nunber
of sources in the filter, while slist will hold as many source
addresses as fit, up to the mninmumof the array size passed in as
the original nunsrc value and the total nunmber of sources in the
filter.

5. Protocol -1 ndependent Multicast Source Filter APIs

Prot ocol -i ndependent functions are provided for join and | eave
operations so that an application may pass a sockaddr_storage
structure obtained fromcalls such as getaddrinfo() [1] as the group
to join. For exanple, an application can resolve a DNS nane (e.(.
NTP. MCAST. NET) to a multicast address which may be either |Pv4 or

| Pv6, and may easily join and | eave the group.

5.1. Basic (Delta-based) API
The reception of multicast packets is controlled by the setsockopt()
options sunmmari zed below. An error of EOPNOTSUPP is returned if
t hese options are used with getsockopt().

The followi ng structures are used by both the Any-Source Milticast
and the Source-Specific Milticast APlI: #include <netinet/in.h>

struct group_req {

ui nt 32_t gr_interface; /* interface index */
struct sockaddr_storage gr_group; /* group address */
1
struct group_source_req {
ui nt 32_t gsr_interface; /* interface index */
struct sockaddr_storage gsr_group; /* group address */
struct sockaddr_storage gsr_source; /* source address */
1

The sockaddr_storage structure is defined in RFC 3493 [1] to be |arge
enough to hold either IPv4 or |Pv6 address infornmation.

The rules for generating errors are the sanme as those given in
Section 5.1.3.

Thal er, et al. I nf or mat i onal [Page 10]

RFC 3678 Mul ticast Source Filter API January 2004

5.1.1. Any-Source Milticast API

Socket option Argurent type

MCAST_JO N_GROUP struct group_req
MCAST_BLOCK _SOURCE struct group_source_req
MCAST _UNBLOCK _SOURCE struct group_source_req
MCAST_LEAVE GROUP struct group_req

MCAST_JO N_GROUP and MCAST_LEAVE GROUP are used to join and | eave an
any-source group.

MCAST_BLOCK_SOURCE can be used to block data froma given source to a
given group (e.g., if the user "nutes" that source), and
MCAST_UNBLOCK_SOQOURCE can be used to undo this (e.g., if the user then
"unmnut es" the source).

5.1.2. Source-Specific Milticast API

Socket option Argurent type

MCAST_JO N_SOURCE_GROUP struct group_source_req
MCAST_LEAVE _SOURCE_GROUP struct group_source_req
MCAST_LEAVE CGROUP struct group_req

MCAST_JO N_SOURCE_GROUP and MCAST_LEAVE SOURCE GROUP are used to join
and | eave a source-specific group

MCAST_LEAVE _GROUP is supported, as a convenience, to drop all sources
whi ch have been joined for a particular group and interface. The
operations are the sane as if the socket had been cl osed.
5.2. Advanced (Full-state) API
| npl ementati ons may exi st that use ioctl() for this API, and for
hi storical purposes, the ioctl() APl is docunented in Appendi x A
The preferred APl uses the new functions described bel ow.
5.2.1. Set Source Filter
#i ncl ude <netinet/in.h>
int setsourcefilter(int s, uint32_t interface,
struct sockaddr *group, socklen_t grouplen
uint32_t fnode, uint_t numsrc,
struct sockaddr_storage *slist);

On success the value 0 is returned, and on failure, the value -1 is
returned and errno is set accordingly.

Thal er, et al. | nf or mat i onal [Page 11]

RFC 3678 Mul ticast Source Filter API January 2004

The s argunent identifies the socket.

The interface argunent holds the interface index of the interface.
The group argument points to either a sockaddr_in structure (for

| Pv4) or a sockaddr_in6 structure (for IPv6) that holds the IP
mul ti cast address of the group.

The groupl en argunent gives the length of the sockaddr_in or
sockaddr _in6 structure.

The fnode argunent identifies the filter node. The value of this
field nmust be either MCAST_| NCLUDE or MCAST_EXCLUDE, which are
i kewi se defined in <netinet/in.h>

The nunsrc argunment hol ds the nunber of source addresses in the slist
array.

The slist argunment points to an array of | P addresses of sources to
i ncl ude or exclude depending on the filter node.

If the inplenmentation inposes a limt on the nmaxi mum nunber of
sources in a source filter, ENOBUFS is generated when the operation
woul d exceed the maxi mum
5.2.2. Get Source Filter
#i ncl ude <netinet/in.h>
int getsourcefilter(int s, uint32_t interface,
struct sockaddr *group, socklen_t grouplen
uint32_t frode, uint_t *nunsrc,
struct sockaddr_storage *slist);

On success the value 0 is returned, and on failure, the value -1 is
returned and errno is set accordingly.

The s argunent identifies the socket.
The interface argunent holds the local I P address of the interface.
The group argument points to either a sockaddr_in structure (for

| Pv4) or a sockaddr_in6 structure (for I1Pv6) that holds the IP
mul ti cast address of the group.

Thal er, et al. | nf or mat i onal [Page 12]

RFC 3678 Mul ticast Source Filter API January 2004

The fnode argunment points to an integer that will contain the filter
node on a successful return. The value of this field will be either
MCAST _| NCLUDE or MCAST_EXCLUDE, which are |ikew se defined in
<netinet/in. h>,

On input, the nunsrc argunent holds the nunber of source addresses
that will fit in the slist array. On output, the nunsrc argunent
will hold the total nunmber of sources in the filter.

The slist argunment points to buffer into which an array of IP
addresses of included or excluded (depending on the filter node)
sources will be witten. If numsrc was O on input, a NULL pointer
may be suppli ed.

If the application does not know the size of the source |ist

bef orehand, it can make a reasonabl e guess (e.g., 0), and if upon
conpl etion, nunsrc holds a larger value, the operation can be
repeated with a | arge enough buffer.

That is, on return, nunsrc is always updated to be the total nunber
of sources in the filter, while slist will hold as many source
addresses as fit, up to the mninmumof the array size passed in as
the original nunsrc value and the total nunmber of sources in the
filter.

6. Security Considerations

Al t hough source filtering can help to conbat denial -of -service
attacks, source filtering alone is not a conplete solution, since it
does not provide protection against spoofing the source address to be
an allowed source. Milticast routing protocols which use reverse-
pat h forwardi ng based on the source address, however, do provide sone
nat ural protection against spoofing the source address, since if a
router receives a packet on an interface other than the one toward
the "real" source, it will drop the packet. However, this still does
not provide any guarantee of protection.

7. Acknow edgnents
Thi s docunent was updated based on feedback fromthe IETF s | DMR and

MAGVA Worki ng Groups, and the Austin Group. WIbert de Graaf also
provi ded many hel pful coments.

Thal er, et al. I nf or mat i onal [Page 13]

RFC 3678 Mul ticast Source Filter API January 2004

8. Appendix A Use of ioctl() for full-state operations

The APl defined here is historic, but is docunented here for
i nformati onal purposes since it is inplenented by nultiple platformns.

The new functions defined earlier in this docunent should now be used

i nst ead.

Retrieving the source filter for a given group cannot be done with
get sockopt () on sone existing platforns, since the group and

i nterface nust be passed down in order to retrieve the correct
filter, and getsockopt only supports an output buffer. This can,
however, be done with an ioctl (), and hence for symetry, both gets
and sets are done with an ioctl.

8.1. I1Pv4d Options
The following are defined in <sys/sockio. h>
o ioctl() SIOCA PMSFILTER to retrieve the list of source
addresses that comprise the source filter along with the

current filter node.

o ioctl() SIOCSIPMSFILTER to set or nodify the source filter

content (e.g., unicast source address list) or node (exclude or

i ncl ude).
loctl option Argunent type
SI OCA PMSFI LTER struct ip_nsfilter
S| OCSI PMSFI LTER struct ip_nsfilter

struct ip_nsfilter {

struct in_addr insf_nultiaddr; /* IP multicast address of group */
struct in_addr insf_interface; /* local |IP address of interface */
ui nt 32_t i msf _f node; /[* filter node */

ui nt 32_t i msf _numsrc; /* nunber of sources in src_list */
struct in_addr insf_slist[1]; /* start of source list */

H

#define | P_MSFI LTER_SI ZE(nunsrc) \
(sizeof (struct ip_msfilter) - sizeof(struct in_addr) \
+ (nunsrc) * sizeof (struct in_addr))

The insf _fnode node is a 32-bit integer that identifies the filter
node. The value of this field nust be either MCAST_ I NCLUDE or

MCAST_EXCLUDE, which are |ikew se defined in <netinet/in.h>.

Thal er, et al. | nf or mat i onal [Page 14]

RFC 3678 Mul ticast Source Filter API January 2004

The structure length pointed to nust be at |east |P_MSFILTER S| ZE(O0)
bytes I ong, and the inmsf_nunsrc paraneter should be set so that
| P_MSFI LTER_SI ZE(i nsf _nunsrc) indicates the buffer |ength.

If the inplenmentation inposes a limt on the nmaxi mum nunber of
sources in a source filter, ENOBUFS is generated when a set operation
woul d exceed the maxi mum

The result of a get operation (SIOCAE PMSFILTER) will be that the
imsf _rultiaddr and inmsf _interface fields will be unchanged, while

i mef _fnode, inmsf_nunsrc, and as many source addresses as fit will be
filled into the application's buffer.

If the application does not know the size of the source |ist

bef orehand, it can make a reasonabl e guess (e.g., 0), and if upon
conpl etion, the imsf_nunmsrc field holds a |arger value, the operation
can be repeated with a | arge enough buffer

That is, on return from SI OCA PMSFI LTER, inmsf_nunmsrc is always
updated to be the total nunber of sources in the filter, while

imef _slist will hold as many source addresses as fit, up to the

m ni mum of the array size passed in as the original inmsf_nunmsrc val ue
and the total nunber of sources in the filter.

8.2. Protocol -1 ndependent Options
The following are defined in <sys/sockio. h>
o ioctl() SIOCCGWSFILTER to retrieve the |list of source addresses
that conprise the source filter along with the current filter

node.

o ioctl() SIOCCSMSFILTER to set or nodify the source filter
content (e.g., unicast source address list) or node (exclude or

i ncl ude).
loctl option Argunent type
S| OCGVBFI LTER struct group_filter
S| OCSMSFI LTER struct group_filter

struct group_filter {

ui nt 32_t of _interface; /* interface index */
struct sockaddr_storage gf_group; /* multicast address */
ui nt 32_t gf _fnode; [* filter node */

ui nt 32_t gf _nunsrc; /* nunber of sources */
struct sockaddr_storage gf _slist[1l]; /* source address */

Thal er, et al. I nf or mat i onal [Page 15]

RFC 3678 Mul ticast Source Filter API January 2004

#defi ne GROUP_FI LTER_SI ZE(nunsrc) \

(sizeof (struct group filter) - sizeof(struct sockaddr_storage) \
+ (nunmsrc) * sizeof (struct sockaddr_storage))

The inf_nunmsrc field is used in the sane way as described for
i msf _nunsrc above.

9. Nornmmtive References

[1]

[2]

Glligan, R, Thomson, S., Bound, J., MCann, J. and W
Stevens, "Basic Socket |nterface Extensions for |Pv6", RFC 3493,
February 2003.

| EEE Std. 1003. 1-2001 Standard for Information Technol ogy --
Portabl e Operating SystemInterface (POSI X). Open G oup

Techni cal Standard: Base Specifications, Issue 6, Decenber 2001.
| SO | EC 9945: 2002. http://ww. opengroup. org/ austin

10. Informative References
[3] Cain, B., Deering, S., Kouvelas, |I., Fenner, B. and A
Thyagaraj an, "Internet G oup Managenent Protocol, Version 3",

[4]

Thal er,

RFC 3376, Cctober 2002.

Vida, R and L. Costa, "Muilticast Listener Discovery Version 2
(M.Dv2) for IPv6", Wrk in Progress, Decenber 2003.

et al. | nf or mat i onal [Page 16]

RFC 3678 Mul ti cast Source Filter API

11.

Aut hor s’ Addr esses

Dave Thal er

M crosoft Corporation
One M crosoft \Way
Rednond, WA 98052-6399

Phone: +1 425 703 8835
EMai | : dt hal er @n crosoft.com

Bill Fenner
75 W11 ow Road
Menl o Park, CA 94025

Phone: +1 650 867 6073
EMai | : fenner @esearch. att.com

Bob Quinn

IP Multicast Initiative (IPM)
St ardust. com

1901 S. Bascom Ave. #333
Canpbel I, CA 95008

Phone: +1 408 879 8080
EMail: rcq@pmnul ticast.com

Thal er, et al. | nf or mat i onal

January 2004

[Page 17]

RFC 3678 Mul ticast Source Filter API January 2004

12.

Ful I Copyright Statenent
Copyright (C) The Internet Society (2004). Al Rights Reserved.

Thi s docunent and translations of it nmay be copied and furnished to
ot hers, and derivative works that comment on or otherw se explain it
or assist inits inplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng I nternet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into |Ianguages other than
Engli sh.

The limted perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assignees.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Acknow edgenent

Fundi ng for the RFC Editor function is currently provided by the
I nternet Society.

Thal er, et al. I nf or mat i onal [Page 18]

