Net wor k Wor ki ng Group S. Sun

Request for Comments: 3652 S. Reilly
Cat egory: I nfornmational L. Lannom
J. Petrone

CNRI

Novenber 2003

Handl e System Protocol (ver 2.1) Specification
Status of this Meno

This meno provides information for the Internet conmmunity. |t does
not specify an Internet standard of any kind. Distribution of this
meno is unlimted.

Copyright Notice
Copyright (C) The Internet Society (2003). Al Rights Reserved.
| ESG Not e

Several groups within the I ETF and | RTF have di scussed the Handl e
Systemand its relationship to existing systens of identifiers. The
| ESG wi shes to point out that these discussions have not resulted in
| ETF consensus on the described Handl e System nor on how it m ght
fit into the IETF architecture for identifiers. Though there has
been di scussion of handles as a formof URI, specifically as a URN

t hese docunents describe an alternate view of how namespaces and
identifiers mght work on the Internet and include characterizations
of existing systenms which may not match the | ETF consensus view.

Abstract

The Handl e Systemis a general -purpose gl obal name service that
al l ows secured name resol ution and adm nistration over the public
Internet. This docunent describes the protocol used for client
software to access the Handl e System for both handl e resol ution and
admi ni stration. The protocol specifies the procedure for a client
software to | ocate the responsi ble handl e server of any given handl e.
It al so defines the nessages exchanged between the client and server
for any handl e operati on.

Sun, et al. | nf or mat i onal [ Page 1]



RFC 3652

Handl e System Protocol (v2.1) Novenber

Tabl e of Contents

1.
2.

Sun,

Overvi ew . .
Pr ot ocol El enents.

2. 1.

2. 2.

2. 3.

Conventions. . .

2.1.1. Data Transm ssion Order

.2. Transport Layer.

.3. Character Case . . .
.4. Standard String Type UTF8- String.
n El ements. . .
2.1 Message Envel ope :

. 2.2 Message Header

.2.3. Message Body .
. 2.4,

S

PP

35

Message Credenti al
sage Transmi ssion .

%I\)I\)I\)I\)QI\)I\)I\)

Handl e Protocol Operations .

3. 1.

w 0w
a b~ w

et al.

i ent Bootstrapping . . .
1. dobal Handl e Regl stry and |ts SerV| ce
Information. . .
Locating the Handl e System SerV| ce Corrponent
Sel ecting the Responsible Server Co
Qper ati on. Co
Query Request.
Successful Query Response
Unsuccessful Query Response
Response from Server
i ce Referral
t Aut henti cati on.
Chal I enge from Server to CI [ ent
Chal | enge- Response fromCient to Ser ver
Chal | enge- Response Verificati on- Request.
Chal | enge- Response Verification- Response .
e Administration. . .
Add Handl e Val ue(s)
Renove Handl e Val ue(s)
Modi fy Handl e Val ue(s)
Create Handl e.
Del ete Handle. . . :
g Authority (NA) Admnlstratlon : :
Li st Handl e(s) under a Nami ng Aut horl ty
Li st Sub-Nami ng Aut horities under a Nami ng
Aut hority.
and Session I\/anagerrent
Sessi on Setup Request.
Sessi on Setup Response .
Sessi on Key Exchange .
Session Term nati on.

=
—_ -

('D_1
Saoao 2 2NN O R

DO <O

d

GLRLPLPWWIWWWWOPmM®P®W®WH W S*’Q

NESORONMNE TRONES T WNES< WD

NNZ3 o020

()

00 00 00 00
b

HAWONE T
B
=]

WRWWE W

2003

oOo~N~NO UMW

| nf or mat i onal [ Page 2]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

4. |Inplenentation Guidelines. . . . . . . . . . . . . . . . . . . 48
4.1. Server |Inplenentation. . . . . . . . . . . . . . . . . . 48
4.2. dient Inplenentation. . . . . . . . . . . . . . . . . . 49

5. Security Considerations. . . . . . . . . . . . . . . . . . .. 49

6. Acknow edgements . . . . . . . . . . . . . . . . . . . . ... 5O

7. Informative References . . . . . . . . . . . . . . . . . . . .50

8. Authors’ Addresses . . . . . . . . . . . . . . . . . . . . .. b2

9. Full Copyright Staterent . . . . . . . . . . . . . . . . . . . 53

1. Overview

The Handl e System provi des a general - purpose, secured gl obal name
service for the Internet. It was originally conceived and descri bed
in a paper by Robert Kahn and Robert W/l ensky [18] in 1995. The
Handl e System defines a client server protocol in which client
software subnits requests via a network to handl e servers. Each
request describes the operation to be perforned on the server. The
server will process the request and return a nessage indicating the
result of the operation. This docunent specifies the protocol for
client software to access a handl e server for handle resol ution and

adm nistration. It does not include the description of the protocol
used to manage handl e servers. A discussion of the nanagenent
protocol is out of the scope of this docunment and will be made

avail able in a separate docunent. The docunent assunes that readers
are fanmiliar with the basic concepts of the Handl e System as
introduced in the "Handl e System Overview' [1], as well as the data
nodel and service definition given in the "Handl e System Nanespace
and Service Definition" [2].

The Handl e System consists of a set of service conponents as defined
in[2]. Fromthe client’s point of view, the Handle Systemis a

di stributed database for handles. D fferent handl es under the Handle
System may be mai ntai ned by different handl e servers at different
network | ocations. The Handle protocol specifies the procedure for a
client to |locate the responsible handle server of any given handle.

It al so defines the nessages exchanged between the client and server
for any handl e operati on.

Sone key aspects of the Handl e protocol include:
o The Handl e protocol supports both handl e resolution and
administration. The protocol follows the data and service
nodel defined in [2].

o Aclient nay authenticate any server response based on the
server’s digital signature.

Sun, et al. I nf or mat i onal [ Page 3]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

o0 A server nay authenticate its client as handl e adm ni strator
via the Handl e authentication protocol. The Handl e
aut hentication protocol is a challenge-response protocol that
supports both public-key and secret-key based aut henticati on.

0 A session may be established between the client and server so
that authentication information and network resources (e.g.
TCP connection) may be shared anong nultiple operations. A
session key can be established to achieve data integrity and
confidentiality.

o The protocol can be extended to support new operations.
Controls can be used to extend the existing operations. The
protocol is defined to allow future backward conpatibility.

o Distributed service architecture. Support service referra
anong di fferent service conmponents.

0 Handles and their data types are based on the | SO 10646
(Uni code 2.0) character set. UTF-8 [3] is the mandated
encodi ng under the Handl e protocol.

The Handl e protocol (version 2.1) specified in this docunent has
changed significantly fromits earlier versions. These changes are
necessary due to changes nade in the Handl e System data nodel and the
service nodel. Servers that inplement this protocol may continue to
support earlier versions of the protocol by checking the protocol
version specified in the Message Envel ope (see section 2.2.1).

2. Protocol Elenents
2.1. Conventions

The followi ng conventions are foll owed by the Handl e protocol to
ensure interoperability anong different inplenentations.

2.1.1. Data Transni ssi on O der

The order of transnission of data packets follows the network byte
order (also called the Big-Endian [11]). That is, when a data-gram
consists of a group of octets, the order of transm ssion of those
octets follows their natural order fromleft to right and fromtop to
bottom as they are read in English. For exanple, in the follow ng
di agram the octets are transmtted in the order they are nunbered.

Sun, et al. I nf or mat i onal [ Page 4]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

8 1234567839 é 12345
I
S S
I 5 I 6 I

If an octet represents a nunmeric quantity, the left nost bit is the
nost significant bit. For exanple, the follow ng diagramrepresents
the value 170 (decimal).

01234567

Simlarly, whenever a nulti-octet field represents a numeric
guantity, the left nost bit is the nost significant bit and the nost
significant octet of the whole field is transmtted first.

2.1.2. Transport Layer

The Handl e protocol is designed so that nessages may be transnitted
either as separate data-granms over UDP or as a continuous byte stream
via a TCP connection. The recommended port nunber for both UDP and
TCP is 2641

UDP Usage

Messages carried by UDP are restricted to 512 bytes (not including
the IP or UDP header). Longer nessages nust be fragnented into
UDP packets where each packet carries a proper sequence nunber in
the Message Envel ope (see Section 2.2.1).

The optimumretransm ssion policy will vary depending on the
network or server performance, but the follow ng are recomended:

o The client should try other servers or service interfaces
before repeating a request to the sane server address.

o The retransm ssion interval should be based on prior
statistics if possible. Overly aggressive retransm ssion
shoul d be avoided to prevent network congestion. The
recommended retransm ssion interval is 2-5 seconds.

Sun, et al. I nf or mat i onal [ Page 5]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

o Wen transmitting |large amounts of data, TCP-friendly
congestion control, such as an interface to the Congestion
Manager [12], shoul d be inplenented whenever possible to
avoi d unfair consunption of the bandw dth agai nst TCP-based
applications. Details of the congestion control wll be
di scussed in a separate docunent.

TCP Usage

Messages under the Handl e protocol can be mapped directly into a
TCP byte-stream However, the size of each nessage is limted by
the range of a 4-byte unsigned integer. Longer nmessages may be
fragmented into multiple messages before the transm ssion and
reassenbl ed at the receiving end.

Several connection managenent policies are recomended:

0 The server should support nultiple connections and should
not bl ock other activities waiting for TCP data.

0 By default, the server should close the connection after
completing the request. However, if the request asks to
keep the connection open, the server should assune that the
client will initiate connection closing.

2.1.3. Character Case

Handl es are character strings based on the | SO 10646 character set
and must be encoded in UTF-8. By default, handle characters are
treated as case-sensitive under the Handl e protocol. A handle

servi ce, however, nay be inplenmented in such a way that ASCl
characters are processed case-insensitively. For exanple, the d obal
Handl e Registry (GHR) provi des a handl e service where ASCI |
characters are processed in a case-insensitive manner. This suggests
that ASCII characters in any nanming authority are case-insensitive.

When handl es are created under a case-insensitive handl e server,

their original case should be preserved. To avoid any confusion, the
server should avoid creating any handl e whose character string

mat ches that of an existing handle, ignoring the case difference.

For example, if the handle "X/ Y' was al ready created, the server
shoul d refuse any request to create the handle "x/y" or any of its
case vari ations.

Sun, et al. I nf or mat i onal [ Page 6]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

2.1.4. Standard String Type: UTF8-String

Handl es are transmitted as UTF8-Strings under the Handl e protocol.
Thr oughout this docunent, UTF8-String stands for the data type that
consists of a 4-byte unsigned integer followed by a character string
in UTF-8 encoding. The leading integer specifies the nunber of
octets of the character string.

2.2. Commpon El enents

Each nmessage exchanged under the system protocol consists of four
sections (see Fig. 2.2). Some of these sections (e.g., the Message
Body) may be enpty dependi ng on the protocol operation.

The Message Envel ope nust always be present. It has a fixed size of
20 octets. The Message Envel ope does not carry any application |ayer
information and is primarily used to help deliver the nessage.
Content in the Message Envelope is not protected by the digita
signhature in the Message Credenti al

The Message Header nust always be present as well. It has a fixed
size of 24 octets and holds the cormmobn data fields of all nessages
exchanged between client and server. These include the operation
code, the response code, and the control options for each protoco
operation. Content in the Message Header is protected by the digita
signhature in the Message Credenti al

The Message Body contains data specific to each protocol operation.
Its format varies according to the operation code and the response
code in the Message Header. The Message Body may be enpty. Content
in the Message Body is protected by the digital signature in the
Message Credenti al

The Message Credential provides a nechanismfor transport security
for any nessage exchanged between the client and server. A non-enpty
Message Credential nmay contain the digital signature fromthe
originator of the nessage or the one-way Message Aut hentication Code
(MAC) based on a pre-established session key. The Message Credenti al
may be used to authenticate the nessage between the client and
server. It can also be used to check data integrity after its
transni ssi on.

Sun, et al. I nf or mat i onal [ Page 7]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

| ; Message wrapper for proper nessage
| ; delivery. Not protected by the

| ; digital signature in the Message

| ; Credential.

| | ; Conmon data fields for all handle
| Message Header | ; operations.

| | ; Specific data fields for each
| Message Body | ; request/response.

; Contains digital signature or

; message aut hentication code (MAC
; upon Message Header and Message

;  Body.

Fig 2.2: Message format under the Handl e protoco
2.2.1. Message Envel ope

Each nmessage begins with a Message Envel ope under the Handl e
protocol. |f a nessage has to be truncated before its transm ssion,
each truncated portion nust also begin with a Message Envel ope.

The Message Envel ope allows the reassenbly of the nessage at the
receiving end. It has a fixed size of 20 octets and consists of
seven fi el ds:

8 12345673829 é 12345673829 g 12345673829 g 1
i orversion 1 mneiversion 1 esengeriag T |
oo seesiomd T |
T st T e |
oo SeqmenceNmber | TTTTTTTTTT I |

Sun, et al. I nf or mat i onal [ Page 8]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

2.2.1.1. <MjorVersion> and <M nor Ver si on>

The <Maj or Versi on> and <M nor Version> are used to identify the
version of the Handle protocol. Each of themis defined as a one-
byt e unsigned integer. This specification defines the protocol
versi on whose <MpjorVersion> is 2 and <M norVersion> is 1

<Mpj or Ver si on> and <M nor Versi on> are designed to allow future
backward conpatibility. A difference in <MjorVersion> indicates
maj or variation in the protocol format and the party with the | ower
<Mpj orVersion> will have to upgrade its software to ensure precise
comuni cation. An increnment in <M norVersion> is nade when

addi tional capabilities are added to the protocol w thout any major
change to the nessage format.

2.2.1.2. <MessageFl ag>

The <MessageFl ag> consists of two octets defined as foll ows:

Bit 0 is the CP (ConPressed) flag that indicates whether the nessage
(excluding the Message Envel ope) is conpressed. |If the CP bit is set
(to 1), the nessage is conpressed. Oherw se, the nessage is not
conpressed. The Handl e protocol uses the sane conpressi on nethod as
used by the FTP protocol[8].

Bit 1 is the EC (EnCrypted) flag that indicates whether the nessage
(excludi ng the Message Envel ope) is encrypted. The EC bit should
only be set under an established session where a session key is in
place. If the EC bit is set (to 1), the nmessage is encrypted using
the session key. OQherw se the nessage is not encrypted.

Bit 2 is the TC (TrunCated) flag that indicates whether this is a
truncated nmessage. Message truncati on happens nost often when

transnitting a | arge nmessage over the UDP protocol. Details of
nmessage truncation (or fragnentation) will be discussed in section
2. 3.

Bits 3 to 15 are currently reserved and nust be set to zero.

Sun, et al. I nf or mat i onal [ Page 9]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

2.2.1.3. <Sessionld>

The <Sessionld> is a four-byte unsigned integer that identifies a
conmuni cati on session between the client and server.

Session and its <Sessionld> are assigned by a server, either upon an
explicit request froma client or when nultiple nessage exchanges are
expected to fulfill the client’s request. For exanple, the server
will assign a unique <Sessionld>in its response if it has to
authenticate the client. A client may explicitly ask the server to
set up a session as a virtually private comuni cati on channel 1ike
SSL [4]. Requests fromclients without an established session nust
have their <Sessionld> set to zero. The server nust assign a unique

non-zero <Sessionld> for each new session. It is also responsible
for term nating those sessions that are not in use after some period
of tine.

Both clients and servers nmust maintain the same <Sessionld> for
nmessages exchanged under an established session. A nessage whose
<Sessionld> is zero indicates that no session has been established.

The session and its state informati on may be shared anong nultiple
handl e operations. They nay al so be shared over multiple TCP
connections as well. Once a session is established, both client and
server nust nmmintain their state information according to the
<Sessionld> The state information may include the stage of the
conversation, the other party’'s authentication information, and the
session key that was established for nessage encryption or

aut hentication. Details of these are discussed in section 3.8.

2.2.1.4. <Requestld>

Each request froma client is identified by a <Requestld>, a 4-byte
unsi gned integer set by the client. Each <Requestld> nust be uni que
fromall other outstanding requests fromthe sane client. The
<Requestld> allows the client to keep track of its requests, and any
response fromthe server nust include the correct <Requestld>

2.2.1.5. <SequenceNunber >

Messages under the Handl e protocol may be truncated during their
transnission (e.g., under UDP). The <SequenceNunber> is a 4-byte
unsi gned integer used as a counter to keep track of each truncated
portion of the original nmessage. The nessage recipient can
reassenbl e the origi nal nmessage based on the <SequenceNunber>. The
<SequenceNunber > nmust start with O for each nessage. Each truncated
nmessage nust set its TC flag in the Message Envel ope. Messages that
are not truncated nust set their <SequenceNumber> to zero.

Sun, et al. | nf or mat i onal [ Page 10]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

2.2.1.6. <Messagelen>

A 4-byte unsigned integer that specifies the total nunber of octets
of any nessage, excluding those in the Message Envel ope. The length
of any single nmessage exchanged under the Handle protocol is limted
by the range of a 4-byte unsigned integer. Longer data can be
transnitted as nultiple nessages with a commobn <Request | d>.

2.2.2. Message Header

The Message Header contains the common data el enents anong any

protocol operation. It has a fixed size of 24 octets and consists of
ei ght fields.
0 1 2 3
01234567890123456789012345678901
I OpCode I
R O EEEREERE R LR EE LR EEERTED |
| ResponseCode |
= |
I OpFl ag I
| Si t el nf oSeri al Nunber | RecursionCount | |

Every nessage that is not truncated nust have a Message Header. |If a
nmessage has to be truncated for its transm ssion, the Message Header
must appear in the first truncated portion of the nessage.

This is different fromthe Message Envel ope, which appears in each
truncated portion of the nmessage.

2.2.2.1. <OpCode>

The <OpCode> stands for operation code, which is a four-byte unsigned
i nteger that specifies the intended operation. The follow ng table
lists the <OpCode>s that MJST be supported by all inplenentations in
order to conformto the base protocol specification. Each operation
code is given a synbolic name that is used throughout this docunent
for easy reference.

Sun, et al. | nf or mat i onal [ Page 11]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

Op_Code Synbol i ¢ Name Renar k
0 OC_RESERVED Reserved
1 OC_RESQOLUTI ON Handl e query
2 OC_GET_SI TEI NFO Get HS_SI TE val ues
100 OC_CREATE_HANDLE Create new handl e
101 OC_DELETE_HANDLE Del ete existing handl e
102 OC_ADD_VALUE Add handl e val ue(s)
103 OC_REMOVE_VALUE Renmove handl e val ue(s)
104 OC_MODI FY_VALUE Modi fy handl e val ue(s)
105 OC_LI ST_HANDLE Li st handl es
106 OC_LI ST_NA Li st sub-naming authorities
200 OC_CHALLENGE_RESPONSE Response to chal | enge
201 OC_VERI FY_RESPONSE Verify chall enge response
300
: { Reserved for handl e server admnistration }
399
400 OC_SESSI ON_SETUP Sessi on setup request
401 OC_SESSI ON_TERM NATE Session term nation request
402 OC_SESSI ON_EXCHANGEKEY  Sessi on key exchange

A detailed description of each of these <OpCode>s can be found in
section 3 of this docunent. 1In general, clients use the <OpCode> to
tell the server what kind of handl e operation they want to
acconplish. Response fromthe server nmust maintain the sane <OpCode>
as the original request and use the <ResponseCode> to indicate the
result.

2.2.2.2. <ResponseCode>

The <ResponseCode> is a 4-byte unsigned integer that is given by a
server to indicate the result of any service request. The |ist of
<ResponseCode>s used in the Handl e protocol is defined in the
follow ng table. Each response code is given a synbolic nane that is
used throughout this docunent for easy reference.

Sun, et al. | nf or mat i onal [ Page 12]



RFC 3652

Sun,

100
101
102

200
201
202

300
301
302
303

400
401
402
403
404
405
406

500
501
502
503
504

900
901

902

et al.

Handl e System Protoco

Synbol i ¢ Name

RC_RESERVED
RC_SUCCESS
RC_ERRCR

RC_SERVER BUSY
RC_PROTOCOL_ERROR

RC_OPERATI ON_DENI ED
RC_RECUR LI M T_EXCEEDED

RC_HANDLE_NOT_FOUND
RC_HANDLE_ALREADY_EXI ST
RC_| NVALI D_HANDLE

RC_VALUE_NOT_FOUND

RC_VALUE_AL

READY_EXI ST

RC_VALUE_| NVALI D

RC_EXPI RED_SI TE_| NFO
RC_SERVER NOT_RESP

RC_SERVI CE_

REFERRAL

RC_NA_DELEGATE

RC_NOT_AUTHORI ZED
RC_ACCESS_DENI ED

RC_AUTHEN_N

EEDED

RC_AUTHEN_FAI LED
RC_| NVALI D_CREDENTI AL

RC_AUTHEN T

| MEQUT

RC_UNABLE_TO AUTHEN

RC_SESSI ON_TI MEQUT

RC_SESSI ON_

FAI LED

RC_NO_SESSI ON_KEY

RC_SESSI ON_
RC_SESSI ON_

RC_TRYI NG
RC_FORWARDE

RC_QUEUED

NO_SUPPORT
KEY_ | NVALI D
D

| nf or mat i onal

(v2.1) Novenber 2003

Reserved for request
Success response

General error

Server too busy to respond
Corrupted or

unr ecogni zabl e nmessage
Unsupported operation

Too many recursions for

t he request

Handl e not found
Handl e al ready exists
Encodi ng (or syntax) error

Val ue not found
Val ue al ready exists
| nval i d handl e val ue

SI TE_I NFO out of date
Server not responsible
Server referra

Nanmi ng aut hority del egati on
t akes pl ace.

Not authorized/ permitted
No access to data

Aut henti cation required
Failed to authenticate
Invalid credenti al

Aut henti cation tined out
Unabl e to aut henticate

Sessi on expired

Unabl e to establish session
No session yet avail able
Sessi on not supported

I nval i d session key

Request under processing
Request forwarded to
anot her server

Request queued for [later
processi ng

[ Page 13]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

Response codes under 10000 are reserved for systemuse. Any nessage
with a response code under 10000 but not |isted above shoul d be
treated as an unknown error. Response codes above 10000 are user
defined and can be used for application specific purposes.

Det ai | ed descriptions of these <ResponseCode>s can be found in
section 3 of this docunent. |In general, any request froma client
must have its <ResponseCode> set to 0. The response nessage fromthe
server nust have a non-zero <ResponseCode> to indicate the result.

For exanple, a response nessage froma server with <ResponseCode> set
to RC_SUCCESS indicates that the server has successfully fulfilled
the client’s request.

2.2.2.3. <OpFl ag>
The <OpFlag> is a 32-bit bit-mask that defines various contro

options for protocol operation. The follow ng figure shows the
| ocation of each option flag in the <OpFl ag> fi el d.

1 1 1 1 1 1
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
| AT | CT | ENC| REC| CA | CN | KC | PO | RD | Reser ved |
_______________________________________________________________ |
| Reserved |
AT - AuThoritative bit. A request with the AT bit set (to 1)

i ndi cates that the request should be directed to the
primary service site (instead of any mrroring sites). A
response nmessage with the AT bit set (to 1) indicates
that the nmessage is returned froma primary server
(within the primary service site).

CT - CerTified bit. Arequest with the CT bit set (to 1) asks
the server to sign its response with its digital
sighature. A response with the CT bit set (to 1)

i ndi cates that the nessage is signed. The server nust
sign its response if the request has its CT bit set (to
1). If the server fails to provide a valid signature in
its response, the client should discard the response and
treat the request as fail ed.

ENC - ENCryption bit. A request with the ENC bit set (to 1)

requires the server to encrypt its response using the
pre-established session key.

Sun, et al. | nf or mat i onal [ Page 14]



RFC 3652

Sun,

REC

KC

PO

RD

et al.

Handl e System Protocol (v2.1) Novenber 2003

RECursive bit. A request with the REC bit set (to 1)
asks the server to forward the query on behalf of the
client if the request has to be processed by anot her
handl e server. The server nmay honor the request by
forwardi ng the request to the appropriate handl e server
and passing on any result back to the client. The server
may al so deny any such request by sending a response

wi th <ResponseCode> set to RC_SERVER NOT_RESP

Cache Authentication. A request with the CA bit set (to
1) asks the caching server (if any) to authenticate any

server response (e.g., verifying the server’s signature)
on behalf of the client. A response with the CA bit set
(to 1) indicates that the response has been

aut henti cated by the caching server.

Conti Nuous bit. A nessage with the CN bit set (to 1)
tells the nmessage recipient that nore nmessages that are
part of the sane request (or response) will follow. This
happens if a request (or response) has data that is too
large to fit into any single nessage and has to be
fragmented into multiple nmessages.

Keep Connection bit. A nmessage with the KC bit set
requires the nmessage recipient to keep the TCP
connection open (after the response is sent back). This
all ows the sane TCP connection to be used for nultiple
handl e operati ons.

Public Only bit. Used by query operations only. A query
request with the PO bit set (to 1) indicates that the
client is only asking for handl e val ues that have the
PUB_READ permi ssion. A request with PO bit set to zero
asks for all the handle values regardl ess of their read
perm ssion. |f any of the handl e values require

ADM N_READ permi ssion, the server nust authenticate the
client as the handl e adm nistrator.

Request-Digest bit. A request with the RD bit set (to 1)
asks the server to include in its response the nessage

di gest of the request. A response nessage with the RD
bit set (to 1) indicates that the first field in the
Message Body contains the nessage digest of the origina
request. The nessage digest can be used to check the
integrity of the server response. Details of these are
di scussed later in this docunent.

I nf or mat i onal [ Page 15]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

Al'l other bits in the <OpFlag> field are reserved and nust be set to
zero.

In general, servers nmust honor the <OpFl ag> specified in the request.
If a requested option cannot be net, the server should return an
error nmessage with the proper <ResponseCode> as defined in the

previ ous secti on.

2.2.2.4. <SitelnfoSerial Nunber >

The <SitelnfoSerial Nunber> is a two-byte unsigned integer. The
<Sitel nfoSerial Nunber> in a request refers to the <Serial Nunber> of
the HS_SI TE val ue used by the client (to access the server). Servers
can check the <SitelnfoSerial Nunber> in the request to find out if
the client has up-to-date service infornmation

Wien possi ble, the server should fulfill a client’s request even if
the service informati on used by the client is out-of-date. However,
the response nessage should specify the |latest version of service
information in the <SitelnforSerial Nunber> field. dients with out-
of -date service informati on can update the service information from
the d obal Handl e Registry. |If the server cannot fulfill a client’s
request due to expired service information, it should reject the
request and return an error message with <ResponseCode> set to
RC_EXPI RED_SI TE_I NFO.

2.2.2.5. <Recursi onCount >

The <RecursionCount> is a one-byte unsigned integer that specifies

t he nunber of service recursions. Service recursion happens if the
server has to forward the client’s request to another server. Any
request directly fromthe client nust have its <Recursi onCount > set
to 0. |If the server has to send a recursive request on behalf of the
client, it nmust increment the <RecursionCount> by 1. Any response
fromthe server nust maintain the sane <RecursionCount> as the one in
the request. To prevent an infinite | oop of service recursion, the
server should be configurable to stop sending a recursive request
when the <Recursi onCount> reaches a certain val ue.

2.2.2.6. <ExpirationTi me>
The <ExpirationTime> is a 4-byte unsigned integer that specifies the
ti me when the nessage should be considered expired, relative to

January 1st, 1970 GMI, in seconds. It is set to zero if no
expiration is expected.

Sun, et al. | nf or mat i onal [ Page 16]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

2.2.2.7. <BodyLength>

The <BodyLength> is a 4-byte unsigned integer that specifies the
nunber of octets in the Message Body. The <BodyLengt h> does not
count the octets in the Message Header or those in the Message
Credenti al .

2.2.3. Message Body

The Message Body al ways foll ows the Message Header. The nunber of
octets in the Message Body can be determ ned fromthe <BodyLength> in
the Message Header. The Message Body may be enpty. The exact format
of the Message Body depends on the <OpCode> and t he <ResponseCode> in
the Message Header. Details of the Message Body under each <CpCode>
and <ResponseCode> are described in section 3 of this docunent.

For any response nessage, if the Message Header has its RD bit (in
<pFl ag>) set to 1, the Message Body nust begin with the nessage
di gest of the original request. The nessage digest is defined as

foll ows:
<Request Di gest> ::= <DigestAl gorithmdentifier>
<MessageDi gest >
wher e

<Di gest Al gorithm dentifier>

An octet that identifies the algorithmused to generate the
nessage digest. |If the octet is set to 1, the digest is
generated using the MD5 [9] algorithm If the octet is set
to 2, SHA-1 [10] algorithmis used.

<MessageDi gest >

The message digest itself. It is calculated upon the
Message Header and the Message Body of the original request.
The length of the field is fixed according to the digest
algorithm For MD5 algorithm the length is 16 octets. For
SHA-1, the length is 20 octets.

The Message Body nmay be truncated into nmultiple portions during its
transnission (e.g., over UDP). Recipients of such a nessage may
reassenbl e the Message Body from each portion based on the
<SequenceNunber> i n the Message Envel ope.

Sun, et al. | nf or mat i onal [ Page 17]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

2.2.4. Message Credenti al

The Message Credential is primarily used to carry any digital
sighatures signed by the nmessage issuer. It may also carry the
Message Authentication Code (MAC) if a session key has been

establi shed. The Message Credential is used to protect contents in
the Message Header and the Message Body from being tanpered with
during transm ssion. The format of the Message Credential is
designed to be semantically conpatible with PKCS#7 [5]. Each Message
Credential consists of the follow ng fields:

0 1 2 3
01234567890123456789012345678901

| Si gner: <Handl e, | ndex>

I

| Si gnedl nfo: <Length> : 4-byte unsigned integer
| Di gest Al gorithm <UTF8-String>

| Si gnedDat a: <Length, Signature>

I

wher e

<Credenti al Lengt h>

A 4-byte unsigned integer that specifies the nunber of octets in
the Message Credential. It nust be set to zero if the nessage has
no Message Credenti al

<Ver si on>

An octet that identifies the version nunber of the Message
Credential. The version nunber specified in this docunent is
zero.

<Reser ved>
An octet that nust be set to zero.

<Opti ons>
Two octets reserved for various cryptography options.

Sun, et al. | nf or mat i onal [ Page 18]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

Sun,

<Si gner> ::= <HANDLE>

<| NDEX>
A reference to a handle value in ternms of the <HANDLE> and the
<I NDEX> of the handl e value. The handl e value may contain the
public key, or the X 509 certificate, that can be used to
validate the digital signature.

<Type>

A UTF8-String that indicates the type of content in the

<Si gnedl nfo> field (described below). It nmay contain HS DI GEST if
<Si gnedl nf o> contai ns the nessage digest, or HS MAC i f

<Si gnedl nf o> contai ns the Message Authentication Code (MAC). The
<Type> field will specify the signature algorithmidentifier if
<Si gnedl nfo> contains a digital signature. For exanple, with the
<Type> field set to HS SI GNED PSS, the <Signedinfo> field will
contain the digital signature generated using the RSA-PSS
algorithm[16]. |If the <Type> field is set to HS SIGNED, the

<Si gnedlnfo> field will contain the digital signature generated
froma DSA public key pair.

<Signedlnfo> ::= <Length>
<Di gest Al gori t hne
<Si gnedDat a>
wher e

<Lengt h>
A 4-byte unsigned integer that specifies the nunber of
octets in the <Signedlnfo> field.

<Di gest Al gori t hne

A UTF8-String that refers to the digest algorithmused to
generate the digital signature. For exanple, the val ue
"SHA- 1" indicates that the SHA-1 algorithmis used to
generate the nmessage digest for the signature.

<Si gnedData> ::= <LENGTH>
<S| GNATURE>
wher e
<LENGTH>

A 4-byte unsigned integer that specifies the nunber of
octets in the <SI GNATURE>.

<S| GNATURE>

Contains the digital signature or the MAC over the
Message Header and Message Body. The syntax and
semantics of the signature depend on the <Type> field

et al. | nf or mat i onal [ Page 19]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

and the public key referenced in the <Signer> field.
For exanple, if the <Type> field is "HS SIG\ED' and
the public key referred to by the <Signer> field is

a DSA [6] public key, the signhature will be the

ASN. 1 octet string representation of the paraneter R
and S as described in [7]. |If the <Signer> field
refers to a handl e value that contains a X 509
certificate, the signature should be encoded according
to RFC 3279 and RFC 3280 [14, 15].

The Message Credential may contain the nessage authentication code
(MAC) generated using a pre-established session key. |In this case,
the <Signer> field nust set its <HANDLE> to a zero-length UTF8-String
and its <INDEX> to the <Sessionld> specified in the Message Envel ope.
The <Signature> field nust contain the MAC in its <SIGNATURE> field
The MAC is the result of the one-way hash over the concatenation of
the session key, the <Message Header>, the <MessageBody>, and the
sessi on key again.

The Message Credential in a response nessage nay contain the digital
signature signed by the server. The server’s public key can be found
in the service information used by the client to send the request to
the server. 1In this case, the client should ignore any reference in
the <Signer> field and use the public key in the service information
to verify the signature.

The Message Credential can al so be used for non-repudiation purposes.
Thi s happens if the Message Credential contains a server’'s digital
sighature. The signature may be used as evidence to denpbnstrate that
the server has rendered its service in response to a client’s
request.

The Message Credential provides a nmechanismfor safe transnission of
any nmessage between the client and server. Any nessage whose Message
Header and Message Body conplies with its Message Credential suggests
that the nmessage indeed conmes fromits originator and assures that
the message has not been tanpered with during its transm ssion

2.3. Message Transni ssion

A large nessage may be truncated into nmultiple packets during its
transm ssion. For exanple, to fit the size limt of a UDP packet,
the nmessage i ssuer nust truncate any | arge nessage into nultiple UDP
packets before its transm ssion. The nessage recipient nust
reassenbl e the nessage fromthese truncated packets before further
processi ng. Message truncation nust be carried out over the entire

Sun, et al. | nf or mat i onal [ Page 20]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

nmessage except the Message Envel ope. A new Message Envel ope has to
be inserted in front of each truncated packet before its
transni ssion. For exanple, a |arge nessage that consists of

| Message Envelope | Message Header, Body, Credenti al i

| Message Envelope 1 | Truncated_Packet 1 |
| Message Envelope 2 | Truncated_Packet 2 |
| Message Envelope N | Truncated Packet N |
where the "Truncated_packet 1", "Truncated_packet 2", ..., and

"Truncat ed_packet N' result fromtruncating the Message Header, the
Message Body and the Message Credential. Each "Message Envel ope i"
(inserted before each truncation) nmust set its TCflag to 1 and

mai ntai n the proper sequence count (in the <SequenceNunmber>). Each
"Message Envel ope i" mnmust also set its <MessagelLength> to reflect the
size of the packet. The recipient of these truncated packets can
reassenbl e the nmessage by concatenating these packets based on their
<SequenceNunber >.

3. Handl e Protocol Operations
This section describes the details of each protocol operation in
terns of nessages exchanged between the client and server. It also
defines the format of the Message Body according to each <OpCode> and
<ResponseCode> in the Message Header.

3.1. dient Bootstrapping

3.1.1. dobal Handl e Registry and its Service Information
The service information for the d obal Handle Registry (GHR) all ows
clients to contact the GHRto find out the responsible service

components for their handles. The service information is a set of
HS_SI TE val ues assigned to the root handle "0.NA/0.NA" and is al so

Sun, et al. | nf or mat i onal [ Page 21]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

called the root service information. The root service information
may be distributed along with the client software, or be downl oaded
fromthe Handl e System website at http://ww. handl e. net.

Changes to the root service information are identified by the
<Seri al Nunber> in the HS SI TE values. A server at GHR can find out
if the root service information used by the client is outdated by
checking the <Serial Nunber> in the client’s request. The client
shoul d update the root service information if the <ResponseCode> of
the response nessage is RC EXPIRED SITE INFO. Cients may obtain the
nost up-to-date root service information fromthe root handle. The
GHR nust sign the root service information using the public key
specified in the outdated service information (identified in the
client’s request) so that the client can validate the signature.

3.1.2. Locating the Handl e System Servi ce Conmponent

Each handl e under the Handl e Systemis managed by a uni que handl e
servi ce conponent (e.g., LHS). For any given handl e, the responsible
servi ce conponent (and its service information) can be found fromits
nam ng authority handle. Before resolving any given handle, the
client needs to find the responsible service conponent by querying
the naming authority handle fromthe GHR

For exanple, to find the responsible LHS for the handl e "1000/abc",
client software can query the GHR for the HS SITE (or HS_SERV) val ues
assigned to the nanming authority handl e "0.NA/ 1000". The set of
HS_SI TE val ues provides the service information of the LHS that
manages every handl e under the naming authority "1000". |If no

HS SI TE val ues are found, the client can check if there is any

HS _SERV val ue assigned to the naning authority handle. The HS_SERV
val ue provides the service handle that naintains the service
information for the LHS. Service handles are used to manage the
service information shared by different nam ng authorities.

It is possible that the nanming authority handl e requested by the
client does not reside at the GHR.  Thi s happens when nam ng
authority del egation takes place. Nam ng authority del egation
happens when a nanming authority del egates an LHS to manage all its
child naming authorities. |In this case, the del egati ng nam ng
authority must contain the service information, a set of

HS_NA DELEGATE val ues, of the LHS that manages its child nam ng
aut horities.

Al'l top-level naming authority handl es nust be registered and nanaged
by the GHR. Wien a server at the GHR receives a request for a nam ng
authority that has been delegated to an LHS, it nust return a nessage
with the <ResponseCode> set to RC _NA DELEGATE, along with the

Sun, et al. | nf or mat i onal [ Page 22]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

HS _NA DELAGATE val ues fromthe nearest ancestor naming authority.

The client can query the LHS described by the HS NA DELAGATE val ues
for the del egated nanming authority handle. |In practice, the ancestor
nam ng authority should make itself available to any handl e server
within the GHR, by replicating itself at the tinme of del egation

This will prevent any cross-queries anong handl e servers (within a
service site) when the naming authority in query and the ancestor
nanm ng authority do not hash into the sane handl e server

3.1.3. Selecting the Responsible Server

Each handl e service conponent is defined in terns of a set of HS_SITE
val ues. Each of these HS SITE val ues defines a service site within

t he service conponent. A service site may consist of a group of
handl e servers. For any given handl e, the responsible handl e server
within the service conponent can be found followi ng this procedure:

1. Select a preferred service site.

Each service site is defined in terns of an HS_SITE val ue. The
HS SI TE val ue may contain a <Description> or other attributes
(under the <AttributeList>) to help the selection. dients
must select the primary service site for any administrative
operati ons.

2. Locate the responsible server within the service site.

This can be done as follows: Convert every ASCI|I character in
the handle to its upper case. Calculate the MD5 hash of the
converted handle string according to the <HashOption> given in
the HS _SITE value. Take the last 4 bytes of the hash result as
a signed integer. Mdulo the absolute value of the integer by
the <Nun®X Server> given in the HS_SITE value. The result is

t he sequence nunber of the <ServerRecord> listed in the HS SITE
val ue. For exanple, if the result of the nodulation is 2, the
third <ServerRecord> listed in the <HS SI TE> shoul d be

sel ected. The <ServerRecord> defines the responsible handle
server for the given handle.

3.2. Query QOperation

A query operation consists of a client sending a query request to the
responsi bl e handl e server and the server returning the query result
to the client. Query requests are used to retrieve handl e val ues
assigned to any given handl e.

Sun, et al. | nf or mat i onal [ Page 23]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

3.2.1. Query Request

The Message Header of any query request mnust set its <OpCode> to
OC_RESOLUTION (defined in section 2.2.2.1) and <ResponseCode> to O.

The Message Body for any query request is defined as follows:

<Message Body of Query Request> ::= <Handle>
<I ndexLi st >
<TypelLi st >
wher e
<Handl| e>

A UTF8-String (as defined in section 2.1.4) that specifies
the handle to be resol ved.

<l ndexLi st >

A 4-byte unsigned integer followed by an array of 4-byte
unsi gned integers. The first integer indicates the nunber
of integers in the integer array. Each nunber in the
integer array is a handle value index and refers to a handle
value to be retrieved. The client sets the first integer to
zero (followed by an enpty array) to ask for all the handle
val ues regardl ess of their index.

<TypelLi st >

A 4-byte unsigned integer followed by a list of UTF8-
Strings. The first integer indicates the nunmber of
UTF8-Strings in the list that follows. Each UTF8-String in
the list specifies a data type. This tells the server to
return all handl e val ues whose data type is listed in the
list. If a UTF8-String ends with the '.” (0x2E) character,
the server nust return all handl e val ues whose data type is
under the type hierarchy specified in the UTF8-String. The
<TypeLi st> may contain no UTF8-String if the first integer
is 0. In this case, the server nust return all handle

val ues regardl ess of their data type.

If a query request does not specify any index or data type and the PO
flag (in the Message Header) is set, the server will return all the
handl e val ues that have the PUBLI C_ READ permission. Cients can also
send queries without the POflag set. In this case, the server will
return all the handl e val ues wi th PUBLI C_READ pernission and all the
handl e val ues with ADM N_READ permi ssion. |f the query requests a
speci fic handl e value via the value index and the val ue does not have
PUBLI C_READ perni ssion, the server should accept the request (and
authenticate the client) even if the request has its PO flag set.

Sun, et al. | nf or mat i onal [ Page 24]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

If a query consists of a non-enpty <IndexList> but an enpty

<TypeLi st>, the server should only return those handl e val ues whose

i ndexes are listed in the <IndexList>  Likewise, if a query consists
of a non-enpty <Typelist> but an enpty <l ndexList>, the server should
only return those handl e val ues whose data types are listed in the
<TypelLi st >.

Wien bot h <l ndexLi st> and <TypelList> fields are non-enpty, the server
should return all handl e val ues whose indexes are listed in the

<l ndexLi st> AND all handl e val ues whose data types are listed in the
<TypelLi st >.

3.2.2. Successful Query Response
The Message Header of any query response nust set its <CpCode> to
OC _RESOLUTI ON. A successful query response nust set its
<ResponseCode> t o RC_SUCCESS.

The nmessage body of the successful query response is defined as

foll ows:
<Message Body of Successful Query Response> ::= [ <Request D gest >]
<Handl| e>
<Val ueli st >
wher e

<Request Di gest >
Optional field as defined in section 2.2.3.

<Handl e>
A UTF8-String that specifies the handl e queried by the
client.

<Val uelLi st >

A 4-byte unsigned integer followed by a list of handle
values. The integer specifies the nunber of handl e val ues
inthe list. The encoding of each handl e value follows the
specification given in [2] (see section 3.1). The integer
is set to zero if there is no handl e value that satisfies

t he query.

Sun, et al. | nf or mat i onal [ Page 25]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

3.2.3. Unsuccessful Query Response

If a server cannot fulfill a client’s request, it must return an
error message. The general format for any error message fromthe
server is specified in section 3.3 of this docunent.

For exanmple, a server must return an error nessage if the queried
handl e does not exist in its database. The error nessage wll have
an enpty nessage body and have its <ResponseCode> set to
RC_HANDLE_NOT_FOUND.

Note that a server should NOT return an RC_HANDLE NOT_FOUND nessage
if the server is not responsible for the handle being queried. It is
possi bl e that the queried handl e exists but is managed by anot her
handl e server (under sone other handle service). Wen this happens,
the server should either send a service referral (see section 3.4) or
sinply return an error nmessage w th <ResponseCode> set to

RC_SERVER _NOT_RESP.

The server may return an error message wth <ResponseCode> set to
RC_SERVER BUSY if the server is too busy to process the request.

Li ke RC_HANDLE NOT_FOUND, an RC_SERVER BUSY nessage al so has an enpty
nmessage body.

Servers should return an RC_ACCESS DEN ED nessage if the request asks
for a specific handle value (via the handl e val ue index) that has
nei t her PUBLI C_READ nor ADM N_READ per m ssi on.

A handl e Server may ask its client to authenticate itself as the
handl e adm ni strator during the resolution. This happens if any
handl e value in query has ADM N_READ perni ssion, but no PUBLI C_READ
perm ssion. Details of client authentication are described later in
this docunent.

3.3. Error Response from Server

A handl e server will return an error nessage if it encounters an
error when processing a request. Any error response fromthe server
must rmaintain the same <OpCode> (in the nessage header) as the one in
the original request. Each error condition is identified by a unique
<ResponseCode> as defined in section 2.2.2.2 of this docunent.

Sun, et al. | nf or mat i onal [ Page 26]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

The Message Body of an error nessage nay be enpty. Oherwise it
consists of the following data fields (unless otherw se specified):

<Message Body of Error Response from Server> ::= [<Request Di gest >]
<Error Message>
[ <IndexList> ]

wher e

<Request Di gest >
Optional field as defined in section 2.2.3.

<Error Message>
A UTF8-String that explains the error.

<I ndexLi st >

An optional field. Wen not enpty, it consists of a 4-byte
unsi gned integer followed by a list of handl e val ue indexes.
The first integer indicates the nunber of indexes in the
list. Each index in the list is a 4-byte unsigned integer
that refers to a handle value that contributed to the error
An exanple would be a server that is asked to add three
handl e val ues, with indexes 1, 2, and 3, and handl e val ues
with indexes of 1 and 2 already in existence. |In this case,
the server could return an error nmessage wth <REsponseCode>
set to RC_VALUE ALREADY EXI ST and add index 1 and 2 to the
<IndexList>  Note that the server is not obligated to
return the conplete list of handle val ue indexes that may
have caused the error.

3.4. Service Referral

A handl e server may receive requests for handl es that are nanaged by
sone ot her handl e server or service. Wen this happens, the server
has the option to either return a referral nessage that directs the
client to the proper handle service, or sinply return an error
nmessage with <ResponseCode> set to RC_SERVER NOT_RESP. Service
referral al so happens when ownership of handl es noves from one handl e
service to another. It may also be used by any |ocal handle service
to delegate its service into nmultiple service |ayers.

The Message Header of a service referral nust maintain the sane

<OpCode> as the one in the original request and set its
<ResponseCode> t o RC_SERVI CE_REFERRAL.

Sun, et al. | nf or mat i onal [ Page 27]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

The Message Body of any service referral is defined as foll ows:

<Message Body of Service Referral> ::=] <RequestDi gest> ]
<Ref err al Handl e>
[ <Val uelList> ]

wher e

<Request Di gest >
Optional field as defined in section 2.2.3.

<Ref err al Handl e>

A UTF8-String that identifies the handle (e.g., a service
handl e) that maintains the referral information (i.e., the
service informati on of the handle service in which this
refers). |If the <ReferralHandle> is set to "0.NA/ 0. NA"

it isreferring the client to the GHR

<Val uelLi st >

An optional field that nmust be enpty if the <Referral Handl e>
is provided. When not enpty, it consists of a 4-byte

unsi gned integer, followed by a Iist of HS SITE values. The
i nteger specifies the nunber of HS SITE values in the list.

Unli ke regular query responses that nay consi st of handl e val ues of
any data type, a service referral can only have zero or nore HS SITE
values in its <ValuelList>  The <Referral Handl e> nmay contain an enpty
UTF8-String if the HS_SITE values in the <Val uelLi st> are not

mai nt ai ned by any handl e.

Care nust be taken by clients to avoid any | oops caused by service
referrals. It is also the client’s responsibility to authenticate
the service information obtained fromthe service referral. A client
shoul d al ways use its own copy of the GHR service information if the
<Referral Handl e> is set to "0.NA/ 0. NA",

3.5. dient Authentication

Clients are asked to authenticate thensel ves as handl e adm ni strators
when querying for any handl e value with ADM N _READ but no PUBLI C_READ
perm ssion. Cient authentication is also required for any handl e
adm ni stration requests that require adm nistrator privileges. This

i ncl udes addi ng, renoving, or nodifying handl es or handl e val ues.

Client authentication consists of multiple nmessages exchanged between
the client and server. Such nessages include the challenge fromthe
server to the client to authenticate the client, the challenge-
response fromthe client in response to the server’s challenge, and

Sun, et al. | nf or mat i onal [ Page 28]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

the verification request and response nmessage if secret key

aut henti cation takes place. Messages exchanged during the
authentication are correlated via a uni que <Sessi onl d> assi gned by
the server. For each authentication session, the server needs to
mai ntain the state information that includes the server’s chall enge,
the chal |l enge-response fromthe client, as well as the original
client request.

The authentication starts with a response nessage fromthe server
that contains a challenge to the client. The client nust respond to
the challenge with a chall enge-response nessage. The server
val i dates the chal |l enge-response, either by verifying the digita
signature inside the chall enge-response, or by sending a verification
request to another handl e server (herein referred to as the
verification server), that maintains the secret key for the
administrator. The purpose of the chall enge and the chall enge-
response is to prove to the server that the client possesses the
private key (or the secret key) of the handle admi nistrator. |If the
authentication fails, an error response will be sent back with the
<ResponseCode> set to RC_AUTHEN_FAI LED

Upon successful client authentication, the server nust al so nmake sure

that the administrator is authorized for the request. |If the

adm ni strator has sufficient privileges, the server will process the
request and send back the result. |If the adm nistrator does not have
sufficient privileges, the server will return an error nessage with

<ResponseCode> set to RC_NOT_AUTHORI ZED

The follow ng sections provide details of each nessage exchanged
during the authentication process.

3.5.1. Challenge from Server to Cient

The Message Header of the CHALLENGE nust keep the same <QpCode> as
the original request and set the <ResponseCode> to RC_AUTH_NEEDED
The server nust assign a non-zero uni que <Sessionld> in the Message
Envel ope to keep track of the authentication. It nust also set the
RD flag of the <OpFlag> (see section 2.2.2.3) in the Message Header,
regardl ess of whether the original request had the RD bit set or not.

Sun, et al. | nf or mat i onal [ Page 29]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

The Message Body of the server’s CHALLENGE is defined as follows:

<Message Body of Server’s Challenge> ::= <RequestDi gest>
<Nonce>
wher e

<Request Di gest >
Message Di gest of the request nessage, as defined in section
2.2.3.

<Nonce>

A 4-byte unsigned integer followed by a random string
generated by the server via a secure random nunber
generator. The integer specifies the nunber of octets in
the random string. The size of the random string should be
no | ess than 20 octets.

Note that the server will not sign the challenge if the client did
not request the server to do so. |If the client worries about whether
it is speaking to the right server, it may ask the server to sign the
<Chal lenge>. If the client requested the server to sign the
<Chal | enge> but failed to validate the server’s signature, the client
shoul d discard the server’s response and rei ssue the request to the
server.

3.5.2. Challenge-Response fromCient to Server

The Message Header of the CHALLENGE RESPONSE nust set its <CpCode> to
OC_CHALLENGE_RESPONSE and its <ResponseCode> to 0. It nust al so keep
t he sanme <Sessionld> (in the Message Envel ope) as specified in the
chal l enge fromthe server.

The Message Body of the CHALLENGE_RESPONSE request is defines as

foll ows:
<Message Body of CHALLENGE_RESPONSE> ::= <AuthenticationType>
<KeyHand| e>
<Keyl ndex>
<Chal | engeResponse>
wher e

<Aut henti cati onType>

A UTF8-String that identifies the type of authentication key
used by the client. For exanmple, the field is set to
"HS_SECKEY" if the client chooses to use a secret key for
its authentication. The field is set to "HS PUBKEY" if a
public key is used instead.

Sun, et al. I nf or mat i onal [ Page 30]



RFC 3652

Sun,

et al.

Handl e System Protocol (v2.1) Novenber 2003

<KeyHand| e>
A UTF8-String that identifies the handle that holds the
public or secret key of the handl e adm nistrator.

<Keyl ndex>

A 4-byte unsigned integer that specifies the index of the
handl e val ue (of the <KeyHandl e>) that holds the public or
secret key of the adninistrator.

<Chal | engeResponse>

Contains either the Message Authentication Code (MAC) or the
digital signature over the challenge fromthe server. |If
the <AuthenticationType> is "HS SECKEY", the

<Chal | engeResponse> consists of an octet followed by the
MAC. The octet identifies the algorithmused to generate
the MAC. For exanple, if the first octet is set to 0x01

the MAC i s generated by

MD5_ Hash(<Secret Key> + <Server Chal | enge> + <Secr et Key>)

where the <SecretKey> is the adnministrator’s secret key
ref erenced by the <KeyHandl e> and <Keyl ndex>. The
<Server Chal | enge> is the Message Body portion of the
server’s challenge. |If the first octet in the

<Chal | engeResponse> is set to 0x02, the MAC is generated
usi ng

SHA-1_Hash(<Secr et Key> + <Server Chal | enge> + <Secr et Key>)

A nore secure approach is to use HVAC [17] for the

<Chal | engeResponse>. The HVAC can be generated using the
<Secr et Key> and <Server Chal | enge>. A <Chal |l engeResponse>
with its first octet set to Ox11l indicates that the HVAC
is generated using the MD5 algorithm Likew se, a

<Chal | engeResponse> with its first octet set to 0x12

i ndicates that the HVAC i s generated using the SHA-1

al gorithm

I f the <AuthenticationType> is "HS PUBKEY", the

<Chal | engeResponse> contains the digital signature over the
Message Body portion of the server’s challenge. The
signature is generated in two steps: First, a one-way hash
value is conputed over the blob that is to be signed.
Second, the hash value is signed using the private key.

The signature consists of a UTF8-String that specifies the
di gest al gorithmused for the signature, followed by the
signature over the server’'s challenge. The <KeyHandl e> and

| nf or mat i onal [ Page 31]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

<Keyl ndex> refers to the adninistrator’s public key that can
be used to verify the signature.

Handl e admini strators are defined in terns of HS ADM N val ues
assigned to the handle. Each HS _ADM N val ue defines the set of
privileges granted to the admi nistrator. It also provides the
reference to the authentication key that can be used to authenticate
the administrator. The reference can be nade directly if the

<Adm nRef > field of the HS ADM N val ue refers to the handl e val ue
that holds the authentication key. Indirect reference to the

aut henti cati on key can al so be made via adm nistrator groups. In
this case, the <AdninRef> field may refer to a handl e val ue of type
HS VLI ST. An HS VLI ST val ue defines an administrator group via a
list of handle value references, each of which refers to the

aut hentication key of a handl e adninistrator.

For handles with nultiple HS_ ADM N val ues, the server will have to
check each of those with sufficient privileges to see if its
<Adm nRef > field matches the <KeyHandl e> and <Keyl ndex>. |If no match

is found, but there are admnistrator groups defined, the server nust
check if the <KeyHandl e> and <Keyl ndex> bel ong to any of the

adm ni strator groups that have sufficient privileges. An
admi ni strator group may contain another administrator group as a
menber. Servers nust be careful to avoid infinite | oops when

navi gati ng these groups.

| f the <KeyHandl e> and <Keyl ndex> are not referenced by any of the
HS_ADM N val ues, or the administrator group that has sufficient
privileges, the server will return an error nmessage with
<ResponseCode> set to RC_NOT_AUTHORI ZED. O herw se, the server wll
continue to authenticate the client as foll ows:

I f the <AuthenticationType> is "HS PUBKEY", the server will retrieve
the administrator’s public key based on the <KeyHandl e> and

<Keyl ndex>. The public key can be used to verify the

<Chal | engeResponse> agai nst the server’s <Challenge>. |If the

<Chal | engeResponse> mat ches the <Chall enge>, the server will continue
to process the original request and return the result. O herw se,
the server will return an error nessage with <ResponseCode> set to
RC_AUTHENTI CATI ON_FAI LED.

| f the <AuthenticationType> is "HS SECKEY", the server will have to
send a verification request to the verification server; that is, the
handl e server that nmanages the handl e referenced by the <KeyHandl e>
The verification request and its response are defined in the
follow ng sections. The verification server will verify the

<Chal | engeResponse> agai nst the <Chal |l enge> on behal f of the handle
server.

Sun, et al. | nf or mat i onal [ Page 32]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

3.5.3. Chall enge-Response Verification-Request

The message header of the VERI FI CATI ON_ REQUEST nust set its <CpCode>
to OC VERI FY_CHALLENGE and the <ResponseCode> to O.

The message body of the Verification-Request is defined as foll ows:

<Message Body of VERI FI CATI ON_ REQUEST> ::= <KeyHandl e>
<Keyl ndex>
<Chal | enge>
<Chal | engeResponse>

wher e

<KeyHand| e>
A UTF8-String that refers to the handl e that holds the
secret key of the adninistrator.

<Keyl ndex>
A 4-byte unsigned integer that is the index of the handle
val ue that holds the secret key of the administrator.

<Chal | enge>
The message body of the server’s challenge, as described in
section 3.5. 1.

<Chal | engeResponse>
The <Chal | engeResponse> fromthe client in response to
the server’s <Chal |l enge>, as defined in section 3.5.2.

Any Chal | enge- Response Verification-Request nust set its CT bit in
the nmessage header. This is to ensure that the verification server
will sign the Verification-Response as specified in the next section

3.5.4. Chal l enge- Response Verification-Response

The Verification-Response tells the requesting handl e server whet her
t he <Chal | engeResponse> nat ches the <Chal |l enge> in the Verification-
Request .

The Message Header of the Verification-Response nust set its
<ResponseCode> t o RC_SUCCESS whet her or not the <Chal | engeResponse>
mat ches the <Challenge>. The RD flag in the <OpFlag> field should

al so be set (to 1) since the <RequestDigist> will be mandatory in the
Message Body.

Sun, et al. I nf or mat i onal [ Page 33]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

The Message Body of the Verification-Response is defined as follows:

<Chal | enge- Response Verificati on- Response>
.. = <Request Di gest >
<VerificationResult>
wher e

<Request Di gest >
Contai ns the nessage di gest of the Verification-Request.

<VerificationResult>

An octet that is set to 1 if the <Chall engeResponse>
mat ches the <Challenge> Oherwise it nmust be set to
0.

The verification server may return an error with <ResponseCode> set
to RC_AUTHEN FAILED if it cannot performthe verification (e.g., the
<KeyHandl e> does not exist, or the <KeyHandl e> and <Keyl ndex> refer
to an invalid handl e value). Wen this happens, the server that
perforns the client authentication should relay the same error
nmessage back to the client.

3.6. Handle Adnmi nistration

The Handl e System protocol supports a set of handl e adninistration
functions that include adding, deleting, and nodifying handl es or
handl e values. Before fulfilling any adninistration request, the
server nust authenticate the client as the handl e adm nistrator that
is authorized for the admi nistrative operation. Handle

admi ni stration can only be carried out by the primary handl e server.

3.6.1. Add Handl e Val ue(s)
Clients add values to existing handl es by sendi ng ADD VALUE requests
to the responsible handl e server. The Message Header of the
ADD VALUE request mnust set its <OpCode> to OC_ADD VALUE.

The Message Body of the ADD VALUE request is encoded as foll ows:

<Message Body of ADD VALUE Request> ::= <Handl e>
<Val uelLi st >
wher e
<Handl e>

A UTF8-String that specifies the handl e.

Sun, et al. I nf or mat i onal [ Page 34]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

<Val uelLi st >

A 4-byte unsigned integer followed by a list of handle
values. The integer indicates the nunber of handl e val ues
inthe list.

The server that receives the ADD VALUE request nust first

aut henticate the client as the adm nistrator with the ADD VALUE
privilege. Upon successful authentication, the server will proceed
to add each value in the <ValuelList> to the <Handle>. |If successful
the server will return an RC_SUCCESS nessage to the client.

Each ADD VALUE request nust be carried out as a transaction. |If
addi ng any value in the <ValuelList> raises an error, the entire
operation must be rolled back. For any failed ADD VALUE request,
none of the values in the <Val ueli st> should be added to the
<Handl e>. The server nust also send a response to the client that
explains the error. For exanple, if a value in the <Valuelist> has
the sanme index as one of the existing handl e values, the server wll
return an error nessage that has the <ResponseCode> set to
RC_VALUE_ALREADY_EXI STS.

ADD_VALUE requests can al so be used to add handl e admi ni strators.
This happens if the <ValuelList> in the ADD VALUE request contains any
HS ADM N val ues. The server nust authenticate the client as an

adm nistrator with the ADD ADM N privilege before fulfilling such
requests.

An ADD VALUE request will result in an error if the requested handl e
does not exist. Wien this happens, the server will return an error
message Wi th <ResponseCode> set to RC_HANDLE NOT_EXI ST.

.6.2. Rempbve Handl e Val ue(s)

Clients renove existing handl e val ues by sendi ng REMOVE_VALUE
requests to the responsible handl e server. The Message Header of the
REMOVE_VALUE request nust set its <COpCode> to OC_REMOVE VALUE.

The Message Body of any REMOVE VALUE request is encoded as foll ows:

<Message Body of REMOVE_VALUE Request> ::= <Handl e>
<l ndexLi st >
wher e
<Handl e>

A UTF8-String that specifies the handl e whose val ue(s) needs
to be renoved

Sun, et al. I nf or mat i onal [ Page 35]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

<I ndexLi st >

A 4-byte unsigned integer followed by a list of handl e val ue
i ndexes. Each index refers to a handl e value to be renoved
fromthe <Handl e>.  The integer specifies the nunber of

i ndexes in the list. Each index is also encoded as a 4-byte
unsi gned i nt eger.

The server that receives the REMOVE VALUE request nust first
authenticate the client as the adnministrator with the REMOVE VALUE

privilege. Upon successful authentication, the server will proceed
to renpove the handl e val ues specified in the <lndexList> fromthe
<Handl e>. |f successful, the server will return an RC_SUCCESS

nmessage to the client.

Each REMOVE _VALUE request nust be carried out as a transaction. |If
renovi ng any val ue specified in the <IndexList> raises an error, the
entire operation nmust be rolled back. For any failed REMOVE_VALUE
request, none of values referenced in the <IndexList> should be
renoved fromthe <Handl e>. The server nust al so send a response to
the client that explains the error. For exanple, attenpts to renove
any handl e value with neither PUB_WRI TE nor ADM N_WRI TE per mi ssi on
wWill result in an RC_ACCESS DENED error. Note that a REMOVE_VALUE
request asking to renove a non-existing handle value will not be
treated as an error.

REMOVE_VALUE requests can al so be used to renove handl e
admnistrators. This happens if any of the indexes in the

<l ndexList> refer to an HS_ADM N val ue. Servers nust authenticate
the client as an adm nistrator with the REMOVE_ADM N privil ege before
fulfilling such requests.

.6.3. Modify Handl e Val ue(s)

Clients can make nodifications to an existing handl e val ue by sending
MODI FY_VALUE requests to the responsi ble handl e server. The Message
Header of the MODI FY_VALUE request nust set its <QpCode> to

OC_MODI FY_VALUE

The Message Body of any MODI FY_VALUE request is defined as foll ows:

<Message Body of MODI FY_VALUE Response> ::= <Handl e>
<Val uelLi st >
wher e
<Handl e>

A UTF8-String that specifies the handl e whose val ue(s) needs
to be nodified.

Sun, et al. I nf or mat i onal [ Page 36]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

<Val uelLi st >

A 4-byte unsigned integer followed by a list of handle
values. The integer specifies the nunber of handl e val ues
inthe list. Each value in the <Val uelList> specifies a
handl e value that will replace the existing handl e val ue
with the same index.

The server that receives the MODI FY_VALUE request nust first
authenticate the client as an admnistrator with the MODI FY_VALUE
privilege. Upon successful authentication, the server will proceed
to replace those handl e values listed in the <Val ueList>, provided
each handl e val ue has PUB_WRI TE or ADM N_WRI TE perm ssion. If
successful, the server must notify the client with an RC_SUCCESS
nessage.

Each MODI FY_VALUE request nust be carried out as a transaction. |f
replacing any value listed in the <Val ueList> raises an error, the
entire operation nmust be rolled back. For any failed MOD FY_VALUE
request, none of values in the <Val ueList> should be replaced. The
server nust also return a response to the client that explains the
error. For exanple, if a MODI FY_VALUE requests to renove a handl e
val ue that has neither PUB_WRI TE nor ADM N_WRI TE perm ssion, the
server nust return an error nessage with the <ResponseCode> set to
RC_ACCESS DENI ED. Any MODI FY_VALUE request to replace non- existing
handl e values is also treated as an error. |In this case, the server
will return an error nessage with <ResponseCode> set to
RC_VALUE_NOT_FOUND,

MODI FY_VALUE requests can al so be used to update handl e
administrators. This happens if both the values in the <Val ueli st >
and the value to be replaced are HS_ADM N val ues. Servers mnust

aut henticate the client as an admnistrator with the MODI FY_ADM N

privilege before fulfilling such a request. It is an error to
replace a non-HS_ADM N value with an HS_ ADM N value. In this case,
the server will return an error nessage with <ResponseCode> set to

RC_VALUE_| NVALI D.
3.6.4. Create Handl e
Clients can create new handl es by sendi ng CREATE HANDLE requests to

t he responsi bl e handl e server. The Message Header of any
CREATE_HANDLE request nust set its <OpCode> to OC_CREATE HANDLE

Sun, et al. I nf or mat i onal [ Page 37]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

The Message Body of any CREATE_HANDLE request is defined as follows:

<Message Body of CREATE _HANDLE Response> ::= <Handl e>
<Val ueli st >
wher e
<Handl| e>

A UTF8-String that specifies the handl e.

<Val uelLi st >

A 4-byte unsigned integer followed by a list of handle

val ues. The integer indicates the nunber of handl e val ues
inthe list. The <Valuelist> should at |east include one
HS ADM N val ue that defines the handl e adm nistrator.

Only naming authority administrators with the CREATE_HANDLE privil ege
are allowed to create new handl es under the nam ng authority. The
server that receives a CREATE _HANDLE request nust authenticate the
client as the adm nistrator of the corresponding nam ng authority
handl e and nake certain that the adm nistrator is authorized to
create handl es under the naming authority. This is different from
the ADD VALUE request where the server authenticates the client as an
admi ni strator of the handle. Upon successful authentication, the
server will proceed to create the new handl e and add each value in
the <Val ueList> to the new <Handl e>. |If successful, the server wll
return an RC_SUCCESS nessage to the client.

Each CREATE_HANDLE request nust be carried out as a transaction. |If
any part of the CREATE HANDLE process fails, the entire operation can
be rolled back. For exanple, if the server fails to add values in
the <Val uelList> to the new handle, it nmust return an error nmessage

wi t hout creating the new handle. Any CREATE HANDLE request that asks
to create a handle that already exists will be treated as an error

In this case, the server will return an error nmessage with the
<ResponseCode> set to RC_HANDLE_ALREADY_EXI ST.

CREATE_HANDLE requests can al so be used to create nam ng authorities.
Nami ng authorities are created as naning authority handl es at the
GHR. Before creating a new namng authority handle, the server nust
aut henticate the client as the adm nistrator of the parent nam ng
authority. Only adm nistrators with the CREATE_NA privil ege are
allowed to create any sub-naming authority. Root |evel nam ng
authorities nmay be created by the administrator of the root handle
"0. NA/ 0. NA".

Sun, et al. I nf or mat i onal [ Page 38]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

3.6.5. Delete Handl e
Clients del ete existing handl es by sendi ng DELETE HANDLE requests to
t he responsi bl e handl e server. The Message Header of the
DELETE_HANDLE request must set its <OpCode> to OC DELETE HANDLE.
The Message Body of any DELETE HANDLE request is defined as follows:
<Message Body of DELETE_HANDLE Request> ::= <Handl e>
wher e

<Handl| e>
A UTF8-String that specifies the handl e.

The server that receives the DELETE HANDLE request nust first
authenticate the client as the adm nistrator with the DELETE_HANDLE

privilege. Upon successful authentication, the server will proceed
to delete the handle along with any handl e val ues assigned to the
handle. |f successful, the server will return an RC_SUCCESS nessage

to the client.

Each DELETE _HANDLE request nust be carried out as a transaction. |If
any part of the DELETE HANDLE process fails, the entire operation
nmust be rolled back. For example, if the server fails to renove any
handl e val ues assigned to the handle (before deleting the handle), it
must return an error nessage W thout deleting the handle. This may
happen if the handl e contains a value that has neither PUB WRI TE nor
ADM N WRI TE permi ssion. |In this case, the server will return an
error nmessage Wi th the <ResponseCode> set to RC_PERM SSI ON_DENI ED. A
DELETE_HANDLE request that asks to delete a non-existing handle wll
al so be treated as an error. The server will return an error nessage
with the <ResponseCode> set to RC _HANDLE NOT_EXI ST.

DELETE_HANDLE requests can al so be used to delete nam ng authorities.
This is achieved by deleting the correspondi ng nam ng authority
handl e on the GHR. Before deleting a naning authority handle, the
server nust authenticate the client as the adm nistrator of the

nam ng authority handle. Only adm nistrators with the DELETE_NA
privilege are allowed to delete the nam ng authority. Root |eve

nam ng authorities nmay be del eted by the administrator of the root
handl e " 0. NA/ 0. NA".

Sun, et al. I nf or mat i onal [ Page 39]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

3.7. Naming Authority (NA) Administration

The Handl e System manages naning authorities via nam ng authority
handl es. Nam ng authority handl es are managed by the GHR dients
can change the service information of any nanming authority by
changi ng the HS SI TE val ues assigned to the correspondi ng nam ng
authority handle. Creating or deleting naning authorities is done by
creating or deleting the correspondi ng nam ng authority handl es.

Root | evel nanming authorities may be created or deleted by the

adm ni strator of the root handle "0.NA/0.NA". Non-root-I|evel nam ng
authorities may be created by the admi nistrator of its parent nam ng
aut hority.

For exampl e, the adm nistrator of the nami ng authority handle

"0.NA/ 10" may create the nanming authority "10.1000" by sending a
CREATE_HANDLE request to the GHR to create the nanming authority
handl e "0. NA/ 10. 1000". Before fulfilling the request, the server at
the GHR nust authenticate the client as the administrator of the
parent naming authority, that is, the adninistrator of the nam ng
authority handle "0.NA/10". The server nust also nake sure that the
admi ni strator has the NA CREATE privil ege.

The Handl e protocol also allows clients to |list handl es or sub-nam ng
authorities under a nam ng authority. Details of these operations
are described in the followi ng sections.

3.7.1. List Handl e(s) under a Naming Authority
Clients send LI ST _HANDLE requests to handl e servers to get a list of
handl es under a naming authority. The Message Header of the
LI ST_HANDLE request must set its <OpCode> to OC LI ST _HANDLE

The Message Body of any LI ST_HANDLE request is defined as follows:

<Message Body of LIST_HANDLE Request> ::= <NA Handl e>
wher e
<NA Handl e>

A UTF8-String that specifies the nam ng authority handle.

To obtain a conplete list of the handles, the request nust be sent to
every handl e server listed in one of the service sites of the
responsi bl e handl e service. Each server within the service site wll
return its own list of handles under the nam ng authority. The
Message Body of a successful LIST_HANDLE response (from each handl e
server) is defined as foll ows:

Sun, et al. I nf or mat i onal [ Page 40]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

<Message Body of LIST_HANDLE Response> ::= <Num Handl es>
<Handl| eLi st >
wher e

<Num_Handl es>
Nunber of handl es (nmanaged by the handl e server) under the
nam ng aut hority.

<Handl eLi st >
A list of UTF8-Strings, each of which identify a handle
under the naming authority.

The LI ST_HANDLE request may potentially slow down the overall system
performance. A handle service (or its service site) has the option
of whether or not to support such request. The server will return an
RC_OPERATI ON_DENI ED nessage if LI ST_HANDLE is not supported. The
server that receives a LI ST_HANDLE request should authenticate the
client as a naning authority adninistrator with the LI ST_HANDLE
privilege before fulfilling the request.

3.7.2. List Sub-Nanming Authorities under a Nam ng Authority
Clients send LIST_NA requests to handle servers to get a list of
sub-nani ng authorities under a nanming authority. The Message Header
of the LIST_NA request must set its <CpCode> to OC LI ST_NA

The Message Body of any LI ST_NA request is defined as follows:

<Message Body of LIST_HANDLE Request> ::= <NA Handl e>
wher e
<NA Handl e>

A UTF8-String that specifies the nam ng authority handle.

To obtain a conplete list of the sub-naning authorities, the request
nmust be sent to every handle server listed in any one of the service
sites of the GHR  Each server within the service site will return
its own |ist of sub-nam ng authority handl es under the given nam ng
authority. The Message Body of a successful LIST_NA response (from
each handl e server) is defined as foll ows:

Sun, et al. | nf or mat i onal [ Page 41]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

<Message Body of LIST_HANDLE Response> ::= <Num Handl es>
<Handl eLi st >
wher e

<Num_Handl es>
Nunber of handl es (nmanaged by the handl e server) under the
nam ng aut hority.

<Handl eLi st >
A list of UTF8-Strings, each of which identifies a sub-
nani ng authority user-specified nani ng authority.

LI ST_NA requests nust be sent to servers under the GHR that manages
all the naming authority handles. The LIST_NA request may
potentially slow down the overall system performance, especially the
GHS. A server (or service sites) under the GHR has the option of
whet her or not to support such requests. The server will return an
RC_OPERATI ON_DENI ED nessage if LIST_NA is not supported. The server
that receives a LI ST_HANDLE request should authenticate the client as
a nanming authority administrator with the LIST_NA privilege before
fulfilling the request.

3.8. Session and Sessi on Management

Sessions are used to allow sharing of authentication information or
network resources anong rultiple protocol operations. For exanple, a
nam ng authority administrator may authenticate itself once through
the session setup, and then register nultiple handl es under the

sessi on.

A client may ask the server to establish a session key and use it for
subsequent requests. A session key is a secret key that is shared by
the client and server. It can be used to authenticate or encrypt any
nmessage exchanged under the session. A session is encrypted if every
nmessage exchanged within the session is encrypted using the session
key.

Sessions may be established as the result of an explicit

OC_SESSI ON_SETUP request froma client. A server nay al so
automatically setup a session when nultiple nmessage exchanges are
expected to fulfill a request. For exanple, the server wll
automatically establish a session if it receives a CREATE_HANDLE
request that requires client authentication

Every session is identified by a non-zero Session ID that appears in
the Message Header. Servers are responsible for generating a unique
Session ID for each outstanding session. Each session may have a set
of state information associated with it. The state information may

Sun, et al. | nf or mat i onal [ Page 42]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

i nclude the session key and the information obtained fromclient
aut hentication, as well as any conmunication options. Servers and
clients are responsible for keeping the state information in sync
until the session is term nated.

A session may be terninated with an OC_SESSI ON_TERM NATE request from
the client. Servers may also terminate a session that has been idle
for a significant anmount of tine.

3.8.1. Session Setup Request

Clients establish a session with a handl e server with a SESSI ON_SETUP
request. A SESSI ON_SETUP request can al so be used to update any
state information associated to an existing session. The Message
Header of the SESSI ON _SETUP request nust have its <OpCode> set to
OC_SESSI ON_SETUP and <ResponseCode> to 0.

The Message Body of any SESSI ON_SETUP request is defined as follows:
<SESSI ON_SETUP Request Message Body> ::= <SessionAttri butes>
wher e

<Sessi onAttri but es>

A 4-byte unsigned integer followed by a |list of session
attributes. The integer indicates the nunber of session
attributes in the list. Possible session attributes include
t he <HS SESSI ON_| DENTI TY>, the <HS SESSI ON _TI MEQUT>, and the
<HS_SESSI ON_KEY_EXCHANGE>. Each of these attributes is
defined as foll ows:

<HS_SESSI ON_I DENTI TY> :: = <Key>
<Handl e>
<Val uel ndex>
wher e
<Key>

A UTF-8 string constant "HS SESSI ON_| DENTI TY"

<Handl| e>

<Val uel ndex>

A UTF-8 string foll owed by a 4-byte unsigned

i nteger that specifies the handle and the handl e
val ue used for client authentication. It mnust
refer to a handl e value that contains the public
key of the client. The public key is used by
the server to authenticate the client.

Sun, et al. I nf or mat i onal [ Page 43]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

<HS_SESSI ON_KEY_EXCHANGE> :: = <Key>
<KeyExchangeDat a>
wher e
<Key>

A UTF-8 string constant "HS SESSI ON_KEY_ EXCHANGE"

<KeyExchangeDat a>

One of the these tuples: <OientC pher

<C i ent G pher KeyExchange>,

<Hdl G pher KeyExchange>, or

<Server G pher KeyExchange>.

Each of these tuples is defined as foll ows:

<O i ent G pher KeyExchange> ::= <Key>
<PubKey>
wher e
<Key>

A UTF-8 string constant "CLI ENT_CI PHER'.

<PubKey>
A public key provided by the client and used
by the server to encrypt the session key.

<Hd| G pher KeyExchange> ::= <Key>
<ExchangeKeyHd| >

<ExchangeKeyl ndex>
wher e

<Key>
A UTF-8 string constant "HDL_ClI PHER'.

<ExchangeKeyHd| >

<ExchangeKeyl ndex>

A UTF-8 string foll owed by a 4-byte unsigned
i nteger. The <ExchangeKeyHdl > and
<ExchangeKeyl ndex> refers to a handl e val ue
used for session key exchange. The handl e
val ue nust contain the public key of the
client. The public key will be used by the
server to encrypt the session key before
sending it to the client.

<Server G pher KeyExchange> ::= <Key>
wher e

Sun, et al. I nf or mat i onal [ Page 44]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

<Key>

A UTF-8 string constant "SERVER Cl PHER'. This
tells the server that the client will be
responsi bl e for generating the session key. The
server will have to provide its public key in

the response nessage and set the <ResponseCode>
to RC_SESSI ON_ EXCHANGEKEY. The client can use
the server’s public key to encrypt the session
key and send it to the server via a subsequent
SESSI ON_EXCHANGEKEY r equest .

<Di ffi eHel | man KeyExchange> :: = <Key>
<DHPar ans>
wher e
<Key>

A UTF-8 string constant "D FFl E_HELLMAN'

<DHPar ans>

The val ues used as input in the Diffie-
Hel | man algorithm It consists of three big
integers of variable length. Each big
integer is encoded in terns of a 4-byte

unsi gned integer followed by an octet string.
The octet string contains the big integer
itself. The 4-byte unsigned integer

speci fies the nunber of octets of the octet

string.
<HS_SESSI ON_TI MEQUT> ::= <Key>
<Ti neQut >
wher e
<Key>

A UTF-8 string constant "HS SESSI ON_TI MEOUT"

<Ti meQut >
A 4-byte unsigned integer that specifies the desired
duration of the session in seconds.

Note that it should be treated as an error if the same session
attribute is listed nultiple tines in the <SessionAttribute> field.
When t his happens, the server should return an error nessage with
<ResponseCode> set to RC_PROTOCOL_ERROR

A SESSI ON_SETUP_REQUEST can be used to change session attributes of
any established session. This happens if the <Sessionld> is non-zero

Sun, et al. I nf or mat i onal [ Page 45]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

and mat ches one of the established sessions. Care nust be taken by
the server to prevent any unauthorized request from changing the
session attributes. For exanple, an encrypted session may only be
changed into an unencrypted session by a SESSI ON_SETUP_REQUEST with
an appropriate MACin its Message Credenti al

3.8.2. Session Setup Response

The Message Header of the SESSI ON SETUP response nust set its
<pCode> to OC _SESSI ON_SETUP. The <ResponseCode> of the

SESSI ON_SETUP response varies according to the SESSI ON SETUP request.
It must be set to RC_SUCCESS if the SESSI ON SETUP request is
successful and the server does not expect a session key to be
returned by the client.

The Message Body of the SESSI ON _SETUP response is enpty unless the
request is asking for <HS_SESSI ON_ KEY_EXCHANGE>. In this case, the
Message Body of the SESSI ON_SETUP response may contain the encrypted
session key fromthe server, or the server’s public key, to be used
for session key exchange. The exact format depends on the content of
the <HS SESSI ON_KEY_EXCHANGE> in the SESSI ON SETUP request. |f

<C i ent G pher KeyExchange> or <Hdl G pher KeyExchange> is given in the
SESSI ON_SETUP request, the Message Body of the SESSI ON_SETUP response
will contain the encrypted session key fromthe server and is defined
as follows:

<Message Body of SESSI ON _SETUP Response>
.. = <Request Di gest >
<Encr ypt edSessi onKey>
[ <EncryptionAl gorithm ]
wher e

<Request Di gest >
Message digest of the SESSI ON_SETUP request is as specified in
section 2.2.3.

<Encr ypt edSessi onKey>

Session key is encrypted using the public key provided in the
SESSI ON_SETUP request. The session key is a randomy
generated octet string fromthe server. The server will only
return the <EncryptedSessi onKey> if the <KeyExchangeData> in
the SESSI ON_SETUP request provides the public key fromthe
client.

<Encrypti onAl gorithnp

(optional) UTF-8 string that identifies the encryption
al gorithm used by the session key.

Sun, et al. I nf or mat i onal [ Page 46]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

| f <ServerCi pher KeyExchange> is given in the SESSI ON_SETUP request,
the server nust provide its public key in the SESSI ON_SETUP response.
The public key can be used by the client in a subsequent

SESSI ON_EXCHANGEKEY request (defined bel ow) for session key exchange.
In this case, the Message Header of the SESSI ON _SETUP response mnust
set its <ResponseCode> to RC_SESSI ON_EXCHANGEKEY. The Message Body
of the SESSI ON_SETUP response nust include the server’s public key
and is defined as follows:

<Message Body of SESSI ON _SETUP response>
.. = <Request Di gest >
<Public Key for Session Key Exchange>

wher e

<Request Di gest >
Message digest of the SESSI ON_SETUP request as specified in
section 2.2.3.

<Public Key for Session Key Exchange>

Public key fromthe server to be used for session key
exchange. It is encoded in the sane format as the <PublicKey>
record in the HS SITE val ue (see section 3.2.2 in [2]).

3.8.3. Session Key Exchange

I f the <ResponseCode> of a SESSI ON_SETUP response is

RC_SESSI ON_EXCHANGEKEY, the client is responsible for generating the
session key and sending it to the server. 1In this case, the client

can generate a session key, encrypt it with the public key provi ded

by the server in the SESSI ON_SETUP response, and send the encrypted

session key to the server in a SESSI ON_EXCHANGEKEY request .

The Message Header of the SESSI ON_EXCHANGEKEY request nust set its
<pCode> to OC_SESSI ON_EXCHANGEKEY and its <ResponseCode> to 0. The
Message Body of the SESSI ON EXCHANGEKEY request is defined as
fol | ows:

<Message Body of OC_SESSI ON_EXCHANGEKEY>
::= <Encrypted Session Key>
[ <EncryptionAl gorithm ]

wher e
<Encr ypt edSessi onKey>
Sessi on key encrypted using the public key provided in the

SESSI ON_SETUP response. The session key is a randomy
generated octet string by the client.

Sun, et al. I nf or mat i onal [ Page 47]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

3.

4.

4.

<Encrypti onAl gorithnp
(optional) UTF-8 string that identifies the encryption
al gorithm used by the session key.

During the session key exchange, the server receiving the exchange
key or session key has the responsibility of ensuring that the key
nmeets the security requirenents defined in its local policy. If the
server considers the key being volunable, it nust return an error
nmessage to the client with <ResponseCode> set to

RC_SESSI ON_KEY_| NVALI D.

8.4. Session Term nation

Clients can term nate a session with a SESSI ON_TERM NATE r equest .
The Message Header of a SESSI ON_TERM NATE request mnust have its
<pCode> set to OC _SESSI ON_TERM NATE and its <ResponseCode> to O.
The message body of any SESSI ON_TERM NATE request nust be enpty.

The server nust send a SESSI ON_TERM NATE response to the client after
the session is termnated. The server should only term nate the
session after it has finished processing all the requests (under the
session) that were subnmitted before the Session Term nation request.

The message header of the SESSI ON_TERM NATE response nmust set its
<pCode> to OC _SESSI ON_TERM NATE. A successful SESSI ON TERM NATE
response nust have its <ResponseCode> set to RC _SUCCESS, and an enpty
nmessage body.

I mpl erent ati on Cui del i nes
Server | nplenentation

The optimal structure for any handl e server will depend on the host
operating system This section only addresses those inplenentation
consi derations that are commpn to nost handl e servers.

A good server inplenmentation should allow easy configuration or
fine-tuning. A suggested list of configurable itens includes the
server’'s network interface(s) (e.g., |IP address, port nunber, etc.),
t he nunber of concurrent processes/threads allowed, tine-out
intervals for any TCP connection and/or authentication process, re-
try policy under UDP connection, policies on whether to support
recursive service, case-sensitivity for ASClIlI characters, and
different levels of transaction |ogging, etc.

Sun, et al. I nf or mat i onal [ Page 48]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

Al'l handl e server inplenentations nust support all the handl e data
types as defined in the "Handl e System Nanespace and Service
Definition" [2]. They should also be able to store handl e val ues of
any application defined data type.

A handl e server mnust support multiple concurrent activities, whether
they are inplenmented as separate processes or threads in the host’s
operating system or multiplexed inside a single name server program
A handl e server should not block the service of UDP requests while it
waits for TCP data or other query activities. Sinilarly, a handle
server should not attenpt to provide recursive service w thout
processing such requests in parallel, though it may choose to
serialize requests froma single client, or to regard identical
requests fromthe same client as duplicates.

4.2. dient |Inplenentation

Clients should be prepared to receive handl e val ues of any data type.
Clients nmay choose to inplenent a callback interface to allow new
nmodul es or plug-ins to be added to support any application-defined
data types.

Clients that follow service referrals or handl e aliases nust avoid
falling into an infinite loop. They should not repeatedly contact
the sanme server for the sanme request with the same target entry. A
client may choose to use a counter that is increnented each tine it
follows a service referral or handle alias. There should be a
configurable upper limt to the counter to control the |evels of
service referrals or handle aliases followed by the client.

Clients that provide sone caching can expect much better perfornance
than those that do not. Cient inplenmentations should al ways

consi der caching the service information associated with a nam ng
authority. This will reduce the nunber of roundtrips for subsequent
handl e requests under the same nam ng authority.

5. Security Considerations

The overall Handl e System security considerations are di scussed in
"Handl e System Overview' [1]; that discussion applies equally to this
docunent. Security considerations regarding the Handl e System data
nodel and service nodel are discussed in "Handl e System Nanespace and
Service Definition" [2].

Sun, et al. I nf or mat i onal [ Page 49]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

For efficiency, the Handl e protocol includes a sinple challenge-
response authentication protocol for basic client authentication.
Handl e servers are free to provide additional authentication

mechani sns (e.g., SASL) as needed. Details of this will be discussed
in a separate docunent.

Data integrity under the Handl e protocol is achieved via the server’s
digital signature. Care must be taken to protect the server’s
private key from any inpersonation attack. Any change to the
server’s public key pair must be registered (in ternms of service
information) with the GHR

6. Acknow edgenents

This work is derived fromthe earlier versions of the Handl e System
i npl ementation. The overall digital object architecture, including
the Handl e System was described in a paper by Robert Kahn and Robert
Wl ensky [22] in 1995. Devel opnent continued at CNRI as part of the
Conput er Science Technical Reports (CSTR) project, funded by the

Def ense Advanced Projects Agency (DARPA) under G ant Nunber NDA-972-
92-J-1029 and MDA-972-99-1-0018. Design ideas are based on those

di scussed within the Handl e System devel opnent team i ncl udi ng David
Ely, Charles Oth, Allison Yu, Sean Reilly, Jane Euler, Catherine
Rey, Stephani e Nguyen, Jason Petrone, and Helen She. Their
contributions to this work are gratefully acknow edged.

The authors al so thank Russ Housl ey (housley@igilsec.con), Ted
Har di e (hardi e@ual conm con), and Mark Baugher (nmbaugher @i sco. com
for their extensive review and comments, as well as reconmendations
received fromother nmenbers of the | ETF/ I RTF community.

7. Informative References

[1] Sun, S. and L. Lannom "Handle System Overview', RFC 3650,
Novenber 2003.

[2] Sun, S., Reilly, S. and L. Lannom "Handl e System Nanmespace and
Service Definition", RFC 3651, Novenber 2003.

[3] Yergeau, F., "UTF-8, a transformation format of |SO 10646", RFC
2279, January 1998.

[4] A Freier, P. Karlton, P. Kocher "The SSL Protocol Version 3.0"

[5] RSA Laboratories, "Public-Key Cryptography Standard PKCS#7"
http://ww. rsasecurity.comrsal abs/ pkcs/

Sun, et al. I nf or mat i onal [ Page 50]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

[6] U S. Federal Information Processing Standard: Digital Signature
St andar d.

[7] Housley, R, "Cryptographic Message Syntax (CVB) Al gorithmns",
RFC 3370, August 2002.

[8] Braden, R, "FTP Data Conpression", RFC 468, March 1973.

[9] Rivest, R, "The MD5 Message-Di gest Al gorithnt, RFC 1321, April
1992.

[10] NI ST, FIPS PUB 180-1: Secure Hash Standard, April 1995.

[11] D. Cohen, "On Holy Wars and a Plea for Peace", Internet
Experinent, Note IEN 137, 1 April 1980.

[12] Bal akrishnan, H and S. Seshan, "The Congesti on Manager", RFC
3124, June 2001.

[13] R Kahn, R Wlensky, "A Framework for Distributed D gital
hj ect Services, May 1995, http://ww. cnri.reston.va.us/k-w htm

[ 14] Polk, W, Housley, R and L. Bassham "Al gorithns and
Identifiers for the Internet X 509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile", RFC
3279, April 2002.

[ 15] Housley, R, Polk, W, Ford, W and D. Solo, "Internet X 509
Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile", RFC 3280, April 2002.

[16] M Bellare and P. Rogaway. The Exact Security of Digital
Signatures - Howto Sign with RSA and Rabin. In Advances in
Crypt ol ogy- Eurocrypt ' 96, pp.399-416, Springer-Verlag, 1996.

[17] Krawczyk, H., Bellare, M and R Canetti, "HMAC. Keyed-Hashi ng
for Message Authentication", RFC 2104, February 1997.

[18] R Kahn, R Wlensky, "A Framework for Distributed D gital
bj ect Services, May 1995, http://ww. cnri.reston.va.us/k-w htm

Sun, et al. | nf or mat i onal [ Page 51]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

8. Authors’' Addresses

Sam X. Sun

Corporation for National Research Initiatives (CNRI)
1895 Preston Wiite Dr., Suite 100

Reston, VA 20191

Phone: 703-262-5316
EMai | : ssun@nri.reston. va. us

Sean Reilly

Corporation for National Research Initiatives (CNRl)
1895 Preston Wiite Dr., Suite 100

Reston, VA 20191

Phone: 703-620-8990
EMail: sreilly@nri.reston.va. us

Larry Lannom

Corporation for National Research Initiatives (CNRl)
1895 Preston Wiite Dr., Suite 100

Reston, VA 20191

Phone: 703-262-5307
EMai | : |l annom@nri.reston.va. us

Jason Petrone

Corporation for National Research Initiatives (CNRl)
1895 Preston Wiite Dr., Suite 100

Reston, VA 20191

Phone: 703-262-5340
EMai |l : jpetrone@nri.reston.va. us

Sun, et al. | nf or mat i onal [ Page 52]



RFC 3652 Handl e System Protocol (v2.1) Novenber 2003

9.

Ful I Copyright Statenent
Copyright (C) The Internet Society (2003). Al Rights Reserved.

Thi s docunent and translations of it nmay be copied and furnished to
ot hers, and derivative works that comment on or otherw se explain it
or assist inits inplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng I nternet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into |Ianguages other than
Engli sh.

The limted perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assignees.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Acknow edgenent

Fundi ng for the RFC Editor function is currently provided by the
I nternet Society.

Sun, et al. I nf or mat i onal [ Page 53]






