Net wor k Wor ki ng Group S. Bl ake-W 1 son
Request for Comments: 3546 BCI
Updat es: 2246 M Nystrom
Cat egory: Standards Track RSA Security
D. Hopwood

I ndependent Consul t ant

J. M kkel sen

Transact i onwar e

T. Wight

Vodaf one

June 2003

Transport Layer Security (TLS) Extensions
Status of this Meno

Thi s docunment specifies an Internet standards track protocol for the
Internet conmunity, and requests di scussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this meno is unlimnited.

Copyright Notice
Copyright (C) The Internet Society (2003). Al Rights Reserved.
Abstract

Thi s docunent describes extensions that may be used to add
functionality to Transport Layer Security (TLS). It provides both
generic extension nmechani snms for the TLS handshake client and server
hel l os, and specific extensions using these generic mechani sns.

The extensions may be used by TLS clients and servers. The
extensi ons are backwards conpatible - comuni cation is possible
between TLS 1.0 clients that support the extensions and TLS 1.0
servers that do not support the extensions, and vice versa.

Conventions used in this Docunent
The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMVENDED', "MAY", and "OPTIONAL" in this

docunment are to be interpreted as described in BCP 14, RFC 2119
[KEYWORDS] .

Bl ake- W1l son, et. al. St andar ds Track [Page 1]

RFC 3546 TLS Ext ensi ons June 2003

Tabl e of Contents

L. Introduction 2
2. Ceneral Extension Mechanisms oo, 4
2.1. Extended dient Hello 5
2.2. Extended Server Hello 5
2.3. Hello EXtensi ONS e e 6
2.4. Extensions to the handshake protocol 7
3. Specific EXtensions 8
3.1. Server Name Indication, 8
3.2. Maxi mum Fragment Length Negotiation 10
3.3. Qient Certificate URLS 11
3.4. Trusted CAlndication 14
3.5. Truncated HVAC e 15
3.6. Certificate Status Request.......... 16
4, Error al erts ... 18
5. Procedure for Defining New Extensions...................... 20
6. Security Considerations i, 21
6.1. Security of server_nameiiiiiiinninn, 21
6.2. Security of max_fragnent_length 21
6.3. Security of client_certificate_url 22
6.4. Security of trusted_ca_keys 23
6.5. Security of truncated hmac 23
6.6. Security of status request 24
7. Internationalization Considerations 24
8. TANA Considerati ons 24
9. Intellectual Property Rights 26
10. Acknow edgment s 26
11. Normative References 27
12. Informative References 28
13. Authors’ AddresSesSt 28
14. Full Copyright Statement 29

1. Introduction

Thi s docunent describes extensions that may be used to add
functionality to Transport Layer Security (TLS). It provides both
generic extension nmechani snms for the TLS handshake client and server
hel l os, and specific extensions using these generic mechani sns.

TLS is now used in an increasing variety of operational environments
- many of which were not envisioned when the original design criteria
for TLS were determ ned. The extensions introduced in this docunent
are designed to enable TLS to operate as effectively as possible in
new environnents |ike wreless networks.

Bl ake- W1l son, et. al. St andar ds Track [Page 2]

RFC 3546 TLS Ext ensi ons June 2003

Wreless environnments often suffer froma nunber of constraints not
conmonly present in wired environnents. These constraints may

i nclude bandwi dth limtations, conputational power linitations,
menory limtations, and battery life limtations.

The extensions described here focus on extending the functionality
provided by the TLS protocol nessage formats. O her issues, such as
the addition of new cipher suites, are deferred.

Specifically, the extensions described in this docunent are designed
to:

- Alow TLS clients to provide to the TLS server the nanme of the
server they are contacting. This functionality is desirable to
facilitate secure connections to servers that host nultiple
"virtual’ servers at a single underlying network address.

- Alow TLS clients and servers to negotiate the naxi num fragnment
length to be sent. This functionality is desirable as a result of
menory constraints anong sone clients, and bandw dth constraints
anong sone access networks.

- Alow TLS clients and servers to negotiate the use of client
certificate URLs. This functionality is desirable in order to
conserve nmenory on constrained clients.

- Alow TLS clients to indicate to TLS servers which CA root keys
they possess. This functionality is desirable in order to prevent
mul ti pl e handshake failures involving TLS clients that are only
able to store a small nunber of CA root keys due to menory
limtations.

- Alow TLS clients and servers to negotiate the use of truncated
MACs. This functionality is desirable in order to conserve
bandwi dth in constrai ned access networks.

- Alow TLS clients and servers to negotiate that the server sends
the client certificate status information (e.g., an Online
Certificate Status Protocol (OCSP) [OCSP] response) during a TLS
handshake. This functionality is desirable in order to avoid
sending a Certificate Revocation List (CRL) over a constrained
access network and therefore save bandw dth.

In order to support the extensions above, general extension

mechani sns for the client hell o nmessage and the server hello nessage
are introduced.

Bl ake- W1l son, et. al. St andar ds Track [Page 3]

RFC 3546 TLS Ext ensi ons June 2003

The extensions described in this docunment may be used by TLS 1.0
clients and TLS 1.0 servers. The extensions are designed to be
backwards conpati ble - neaning that TLS 1.0 clients that support the
extensions can talk to TLS 1.0 servers that do not support the
extensi ons, and vice versa.

Backwards conpatibility is primarily achi eved via two consi derations:

- Cients typically request the use of extensions via the extended
client hello nessage described in Section 2.1. TLS 1.0 [TLS]
requires servers to accept extended client hello nessages, even if
the server does not "understand” the extension

- For the specific extensions described here, no mandatory server
response is required when clients request extended functionality.

Not e however, that although backwards conpatibility is supported,
some constrained clients may be forced to reject comunications with
servers that do not support the extensions as a result of the limted
capabilities of such clients.

The remai nder of this docunent is organized as follows. Section 2
descri bes general extension mechanisns for the client hello and
server hell o handshake nmessages. Section 3 describes specific
extensions to TLS 1.0. Section 4 describes new error alerts for use
with the TLS extensions. The final sections of the docunent address
| PR, security considerations, registration of the application/pkix-
pki path M ME type, acknow edgenments, and references.

2. CGeneral Extension Mechani sns

This section presents general extension mechanisns for the TLS
handshake client hello and server hello nessages.

These general extension nechanisns are necessary in order to enable
clients and servers to negotiate whether to use specific extensions,
and how to use specific extensions. The extension formats descri bed
are based on [MAI LI NG LI ST].

Section 2.1 specifies the extended client hello nessage fornmat,
Section 2.2 specifies the extended server hello nessage format, and
Section 2.3 describes the actual extension format used with the
extended client and server hell os.

Bl ake- W1l son, et. al. St andar ds Track [Page 4]

RFC 3546 TLS Ext ensi ons June 2003

2.1. Extended Cient Hello

Clients MAY request extended functionality from servers by sending
the extended client hello nessage format in place of the client hello
nmessage format. The extended client hello nessage format is:

struct {
Prot ocol Versi on client_version;
Random r andom
Sessi onl D sessi on_i d;
Ci pher Suite cipher_suites<2..2"16-1>;
Conmpr essi onMet hod conpr essi on_net hods<1. . 2"8- 1>;
Ext ensi on client_hell o_extension_|ist<0..2"16-1>;
} dientHello;

Here the new "client_hell o_extension_list" field contains a |list of
extensions. The actual "Extension" fornmat is defined in Section 2.3.

In the event that a client requests additional functionality using
the extended client hello, and this functionality is not supplied by
the server, the client MAY abort the handshake.

Note that [TLS], Section 7.4.1.2, allows additional information to be
added to the client hello nmessage. Thus the use of the extended
client hello defined above should not "break" existing TLS 1.0
servers.

A server that supports the extensions nechani sm MUST accept only
client hello nessages in either the original or extended ClientHello
format, and (as for all other nessages) MJST check that the anmount of
data in the nessage precisely matches one of these fornmats; if not
then it MJST send a fatal "decode_error" alert. This overrides the
"Forward conpatibility note" in [TLS].

2.2. Extended Server Hello
The extended server hello nessage fornmat MAY be sent in place of the
server hello nessage when the client has requested extended

functionality via the extended client hello nessage specified in
Section 2.1. The extended server hello nessage format is:

Bl ake- W1l son, et. al. St andar ds Track [Page 5]

RFC 3546 TLS Ext ensi ons June 2003

struct {

Pr ot ocol Versi on server_version

Random r andom

Sessi onl D sessi on_i d;

Ci pher Suite cipher_suite;

Conmpr essi onMet hod conpr essi on_net hod;

Ext ensi on server_hel |l o_extension_|ist<0..2"16-1>;
} ServerHell o;

Here the new "server_hell o_extension_list" field contains a list of
extensions. The actual "Extension" format is defined in Section 2.3.

Note that the extended server hello nessage is only sent in response
to an extended client hello nmessage. This prevents the possibility
that the extended server hell o nmessage could "break" existing TLS 1.0
clients.

2.3. Hell o Extensions

The extension format for extended client hell os and extended server
hell os is:

struct {
Ext ensi onType extensi on_type;
opaque extension_dat a<0..2"16-1>
} Extension;

Her e:
"extension_type" identifies the particular extension type.

"ext ensi on_data" contains information specific to the particular
ext ensi on type.

The extension types defined in this docunent are:

enum {
server_nanme(0), max_fragnent_length(1),
client _certificate url(2), trusted _ca_keys(3),
truncated_hnac(4), status_request(5), (65535)
} ExtensionType;

Note that for all extension types (including those defined in
future), the extension type MJUST NOT appear in the extended server
hell o unl ess the sane extension type appeared in the correspondi ng
client hello. Thus clients MJST abort the handshake if they receive
an extension type in the extended server hello that they did not
request in the associ ated (extended) client hello.

Bl ake- W1l son, et. al. St andar ds Track [Page 6]

RFC 3546 TLS Ext ensi ons June 2003

Nonet hel ess "server initiated" extensions may be provided in the
future within this framework by requiring the client to first send an
enpty extension to indicate that it supports a particul ar extension

Al so note that when nmultiple extensions of different types are
present in the extended client hello or the extended server hell o,
the extensions may appear in any order. There MJUST NOT be nore than
one extension of the sanme type.

Finally note that all the extensions defined in this docunent are
rel evant only when a session is initiated. However, a client that
requests resunption of a session does not in general know whether the
server will accept this request, and therefore it SHOULD send an
extended client hello if it would normally do so for a new session.
If the resunption request is denied, then a new set of extensions
will be negotiated as normal. |f, on the other hand, the ol der
session is resuned, then the server MJST ignore extensions appearing
in the client hello, and send a server hello containing no
extensions; in this case the extension functionality negoti ated
during the original session initiation is applied to the resuned
sessi on.

2.4. Extensions to the handshake protoco

Thi s docunent suggests the use of two new handshake nessages,
"CertificateURL" and "CertificateStatus”". These nmessages are
described in Section 3.3 and Section 3.6, respectively. The new
handshake nessage structure therefore becones:

enum {
hell o_request (0), client_hello(l), server_hello(2),
certificate(1l), server_key_exchange (12),
certificate_request(13), server_hello_done(14),
certificate_verify(15), client_key_exchange(16),
finished(20), certificate_url (21), certificate_status(22),
(255)

} HandshakeType;

Bl ake- W1l son, et. al. St andar ds Track [Page 7]

RFC 3546 TLS Ext ensi ons June 2003
struct {
HandshakeType nsg_type; / * handshake type */
ui nt 24 1 ength; /* bytes in nmessage */
sel ect (HandshakeType) {
case hell o_request: Hel | oRequest ;
case client_hello: dientHello;
case server_hell o: Server Hel | o;
case certificate: Certificate;
case server_key_exchange: Server KeyExchange;
case certificate_request: CertificateRequest;
case server_hel | o_done: Server Hel | oDone;
case certificate_verify: CertificateVerify;
case client_key_exchange: i ent KeyExchange;
case finished: Fi ni shed;
case certificate_url: CertificateURL;
case certificate_status: CertificateStatus;
} body;
} Handshake;

3.1. Server

Bl ake- W I son, et. al.

Speci fi ¢ Extensions

This section describes the specific TLS extensions specified in this
docunent .

Not e that any nmessages associated with these extensions that are sent
during the TLS handshake MJUST be included in the hash cal cul ations
i nvolved in "Finished" nessages.

Section 3.1 describes the extension of TLS to allow a client to

i ndi cate which server it is contacting. Section 3.2 describes the
extension to provide maxi num fragnment |ength negotiation. Section
3.3 describes the extension to allow client certificate URLs.

Section 3.4 describes the extension to allow a client to indicate

whi ch CA root keys it possesses. Section 3.5 describes the extension
to allow the use of truncated HVAC. Section 3.6 describes the
extension to support integration of certificate status information
nmessages into TLS handshakes.

Nanme | ndi cati on

[TLS] does not provide a nechanismfor a client to tell a server the
nane of the server it is contacting. It may be desirable for clients
to provide this information to facilitate secure connections to
servers that host multiple "virtual’ servers at a single underlying
net wor k addr ess.

St andar ds Track [Page 8]

RFC 3546 TLS Ext ensi ons June 2003

In order to provide the server name, clients MAY include an extension
of type "server_nane" in the (extended) client hello. The
"extension_data" field of this extension SHALL contain

"Server NameLi st" where:

struct {
NanmeType nane_type;
sel ect (name_type) {
case host_nane: Host Nane;
} nane;
} Server Narne;

enum {
host _nanme(0), (255)
} NaneType;

opaque Host Name<l..2716-1>;

struct {
Server Nane server_name_|ist<1l..2"16-1>
} Server NamelLi st ;

Currently the only server nanes supported are DNS host nanes, however
this does not inply any dependency of TLS on DNS, and other nane
types may be added in the future (by an RFC that Updates this
docunent). TLS MAY treat provided server nanes as opaque data and
pass the names and types to the application.

"Host Nane" contains the fully qualified DNS hostnane of the server
as understood by the client. The hostnane is represented as a byte
string using UTF-8 encoding [UTF8], without a trailing dot.

If the hostnane | abels contain only US-ASCI|I characters, then the
client MUST ensure that | abels are separated only by the byte Ox2E,
representing the dot character WO002E (requirenent 1 in section 3.1
of [IDNA] notwithstanding). If the server needs to match the Host Name
agai nst nanes that contain non-US-ASClI| characters, it MJST perform
t he conversion operation described in section 4 of [IDNA], treating
the Host Name as a "query string"” (i.e. the Al owlUnassigned flag MJST
be set). Note that IDNA allows | abels to be separated by any of the
Uni code characters U+002E, U+3002, WFFOE, and U+FF61, therefore
servers MJST accept any of these characters as a |abel separator. |If
the server only needs to match the Host Nane agai nst nanes cont ai ni ng
exclusively ASCI|I characters, it MJST conpare ASCI| nanes case-

i nsensitively.

Literal IPv4 and | Pv6 addresses are not pernmitted in "Host Nanme".

Bl ake- W1l son, et. al. St andar ds Track [Page 9]

RFC 3546 TLS Ext ensi ons June 2003

It is RECOWENDED that clients include an extension of type
"server_nane" in the client hello whenever they locate a server by a
supported nane type.

A server that receives a client hello containing the "server_nane"
extensi on, MAY use the information contained in the extension to
guide its selection of an appropriate certificate to return to the
client, and/or other aspects of security policy. 1In this event, the
server SHALL include an extension of type "server_name" in the
(extended) server hello. The "extension_data" field of this
extensi on SHALL be enpty.

If the server understood the client hello extension but does not
recogni ze the server nane, it SHOULD send an "unrecogni zed_nane"
alert (which MAY be fatal).

If an application negotiates a server name using an application
protocol, then upgrades to TLS, and a server_nanme extension is sent,
then the extension SHOULD contain the sanme nane that was negoti ated
in the application protocol. |If the server_nane is established in
the TLS sessi on handshake, the client SHOULD NOT attenpt to request a
different server nane at the application |ayer.

3. 2. Maximum Fragnment Length Negoti ation

[TLS] specifies a fixed maxi mum pl ai ntext fragnent |ength of 2714
bytes. It may be desirable for constrained clients to negotiate a
smal | er maxi num fragnent | ength due to nenory linitations or

bandwi dth limtations.

In order to negotiate smaller nmaxi num fragment |engths, clients MAY
i ncl ude an extension of type "max_fragnent | ength" in the (extended)
client hello. The "extension_data" field of this extension SHALL
cont ai n:

enung
279(1), 2710(2), 2711(3), 2712(4), (255)
} MaxFragnent Lengt h;

whose value is the desired maxi mum fragnment | ength. The all owed
values for this field are: 279, 2710, 2711, and 2712.

Bl ake- W1l son, et. al. St andar ds Track [Page 10]

RFC 3546 TLS Ext ensi ons June 2003

Servers that receive an extended client hello containing a
"max_fragnment | ength" extension, MAY accept the requested maxi mum
fragnent |ength by including an extension of type

"max_fragment _length" in the (extended) server hello. The
"extension_data" field of this extension SHALL contain
"MaxFragnment Lengt h" whose value is the sane as the requested maxi num
fragnent | ength.

If a server receives a maxi mum fragment |ength negotiation request
for a value other than the allowed values, it MJST abort the
handshake with an "illegal _paraneter” alert. Simlarly, if a client
receives a maxi mum fragnent |ength negotiation response that differs
fromthe length it requested, it MJST al so abort the handshake with
an "illegal _paraneter" alert.

Once a maxi mum fragnment | ength other than 2714 has been successfully
negoti ated, the client and server MJST i nmedi ately begin fragnmenting
nmessages (i ncludi ng handshake nessages), to ensure that no fragnent

| arger than the negotiated length is sent. Note that TLS al ready
requires clients and servers to support fragnentation of handshake
nessages.

The negotiated | ength applies for the duration of the session
i ncl udi ng sessi on resunpti ons.

The negotiated length [inits the input that the record | ayer may
process without fragmentation (that is, the nmaxi num val ue of

TLSPIl ai ntext.length; see [TLS] section 6.2.1). Note that the output
of the record layer nmay be larger. For exanple, if the negotiated
length is 229=512, then for currently defined cipher suites (those
defined in [TLS], [KERB], and [AESSU TES]), and when null conpression
is used, the record |layer output can be at nost 793 bytes: 5 bytes of
headers, 512 bytes of application data, 256 bytes of padding, and 20
bytes of MAC. That neans that in this event a TLS record | ayer peer
receiving a TLS record | ayer nessage |arger than 793 bytes may

di scard the nessage and send a "record_overflow' alert, wthout
decrypting the nessage.

3.3. Cient Certificate URLS

[TLS] specifies that when client authentication is perforned, client
certificates are sent by clients to servers during the TLS handshake.
It may be desirable for constrained clients to send certificate URLs
in place of certificates, so that they do not need to store their
certificates and can therefore save nenory.

Bl ake- W1 son, et. al. St andards Track [Page 11]

RFC 3546 TLS Ext ensi ons June 2003

In order to negotiate to send certificate URLs to a server, clients
MAY i nclude an extension of type "client_certificate_url" in the
(extended) client hello. The "extension_data" field of this
extensi on SHALL be enpty.

(Note that it is necessary to negotiate use of client certificate
URLs in order to avoid "breaking" existing TLS 1.0 servers.)

Servers that receive an extended client hello containing a
"client_certificate_url" extension, MAY indicate that they are
willing to accept certificate URLs by including an extension of type
"client_certificate_url" in the (extended) server hello. The
"extension_data" field of this extension SHALL be enpty.

After negotiation of the use of client certificate URLsS has been
successfully conpleted (by exchangi ng hellos including
"client_certificate_url" extensions), clients MAY send a
"CertificateURL" nmessage in place of a "Certificate" nessage:

enum {
i ndi vi dual _certs(0), pkipath(1l), (255)
} Cert Chai nType;

enum {
fal se(0), true(l)
} Bool ean;

struct {

Cert Chai nType type;

URLANdOpt i onal Hash url _and_hash_Ilist<1..2"16-1>;
} CertificateURL

struct {
opaque url<1..2716-1>;
Bool ean hash_present;
sel ect (hash_present) {
case fal se: struct {};
case true: SHAlHash
} hash;
} URLAndOpti onal Hash

opaque SHAlHash[20];

Here "url _and_hash_|i st
hashes.

contains a sequence of URLs and opti onal

Bl ake- W1 son, et. al. St andards Track [Page 12]

RFC 3546 TLS Ext ensi ons June 2003

When X. 509 certificates are used, there are two possibilities:

- if CertificateURL.type is "individual _certs", each URL refers to a
si ngl e DER-encoded X 509v3 certificate, with the URL for the
client’s certificate first, or

- if CertificateURL.type is "pkipath", the list contains a single
URL referring to a DER-encoded certificate chain, using the type
Pki Pat h described in Section 8.

When any other certificate format is used, the specification that
descri bes use of that format in TLS shoul d define the encoding format
of certificates or certificate chains, and any constraint on their
orderi ng.

The hash corresponding to each URL at the client’s discretion is
either not present or is the SHA-1 hash of the certificate or
certificate chain (in the case of X 509 certificates, the DER-encoded
certificate or the DER-encoded Pki Path).

Note that when a list of URLs for X 509 certificates is used, the
ordering of URLs is the sane as that used in the TLS Certificate
nmessage (see [TLS] Section 7.4.2), but opposite to the order in which
certificates are encoded in PkiPath. |In either case, the self-signed
root certificate MAY be onmtted fromthe chain, under the assunption
that the server nust already possess it in order to validate it.

Servers receiving "CertificateURL" SHALL attenpt to retrieve the
client’s certificate chain fromthe URLs, and then process the
certificate chain as usual. A cached copy of the content of any URL
in the chain MAY be used, provided that a SHA-1 hash is present for
that URL and it matches the hash of the cached copy.

Servers that support this extension MJST support the http: URL schene
for certificate URLs, and MAY support other schenes.

If the protocol used to retrieve certificates or certificate chains
returns a MME formatted response (as HITP does), then the foll ow ng
M ME Cont ent - Types SHALL be used: when a single X 509v3 certificate
is returned, the Content-Type is "application/pkix-cert" [PKIOP], and
when a chain of X 509v3 certificates is returned, the Content-Type is
"application/pkix-pki path" (see Section 8).

Bl ake- W1l son, et. al. St andar ds Track [Page 13]

RFC 3546 TLS Ext ensi ons June 2003

If a SHA-1 hash is present for an URL, then the server MJST check
that the SHA-1 hash of the contents of the object retrieved fromthat
URL (after decoding any M Mt Cont ent-Transf er-Encodi ng) matches the
given hash. If any retrieved object does not have the correct SHA-1
hash, the server MJST abort the handshake with a
"bad_certificate_hash_value" alert.

Note that clients may choose to send either "Certificate" or
"CertificateURL" after successfully negotiating the option to send
certificate URLs. The option to send a certificate is included to
provide flexibility to clients possessing nultiple certificates.

If a server encounters an unreasonabl e delay in obtaining
certificates in a given CertificateURL, it SHOULD tinme out and signa
a "certificate_unobtainable" error alert.

3.4. Trusted CA |Indication

Constrained clients that, due to nenory linitations, possess only a
smal | nunber of CA root keys, may wish to indicate to servers which
root keys they possess, in order to avoid repeated handshake
failures.

In order to indicate which CA root keys they possess, clients MAY
i nclude an extension of type "trusted_ca_keys" in the (extended)
client hello. The "extension_data" field of this extension SHALL
contain "TrustedAut horities" where:

struct {
TrustedAuthority trusted_authorities_|ist<0..2"16-1>;
} TrustedAut horiti es;

struct {
IdentifierType identifier_type;
select (identifier_type) {
case pre_agreed: struct {};
case key_shal hash: SHAlHash
case x509_nane: Distingui shedNaneg;
case cert_shal_hash: SHAlHash;
} identifier;
} TrustedAuthority;
enum {
pre_agreed(0), key_shal _hash(1l), x509 nane(2),
cert_shal_hash(3), (255)
} ldentifierType;

opaque Di stingui shedNane<1..2"16- 1>;

Bl ake- W1l son, et. al. St andar ds Track [Page 14]

RFC 3546 TLS Ext ensi ons June 2003

Here "TrustedAuthorities" provides a list of CA root key identifiers
that the client possesses. Each CA root key is identified via
ei t her:

- "pre_agreed" - no CA root key identity supplied.

- "key_shal_hash" - contains the SHA-1 hash of the CA root key. For
DSA and ECDSA keys, this is the hash of the "subjectPublicKey"
val ue. For RSA keys, the hash is of the big-endian byte string
representati on of the nodulus w thout any initial O-valued bytes.
(This copies the key hash formats depl oyed in other environnments.)

- "x509_nanme" - contains the DER-encoded X 509 Distingui shedNane of
the CA

- "cert_shal_hash" - contains the SHA-1 hash of a DER-encoded
Certificate containing the CA root key.

Note that clients may include none, sone, or all of the CA root keys
they possess in this extension.

Note also that it is possible that a key hash or a Distingui shed Nane
al one may not uniquely identify a certificate issuer - for exanple if
a particular CA has nultiple key pairs - however here we assune this
is the case followi ng the use of Distinguished Nanes to identify
certificate issuers in TLS.

The option to include no CA root keys is included to allow the client
to indicate possession of sone pre-defined set of CA root keys.

Servers that receive a client hello containing the "trusted_ca_keys"
extensi on, MAY use the information contained in the extension to

gui de their selection of an appropriate certificate chain to return
tothe client. 1In this event, the server SHALL include an extension
of type "trusted_ca_keys" in the (extended) server hello. The
"extension_data" field of this extension SHALL be enpty.

3.5. Truncated HVAC

Currently defined TLS ci pher suites use the MAC constructi on HVAC
with either MD5 or SHA-1 [HVAC] to authenticate record | ayer

conmuni cations. In TLS the entire output of the hash function is
used as the MAC tag. However it may be desirable in constrai ned
environnents to save bandwi dth by truncating the output of the hash
function to 80 bits when form ng MAC tags

Bl ake- W1l son, et. al. St andar ds Track [Page 15]

RFC 3546 TLS Ext ensi ons June 2003

In order to negotiate the use of 80-bit truncated HVAC, clients MAY
i ncl ude an extension of type "truncated_hmac" in the extended client
hello. The "extension_data" field of this extension SHALL be enpty.

Servers that receive an extended hello containing a "truncated_hmac"
extensi on, MAY agree to use a truncated HVAC by including an
extensi on of type "truncated _hmac", with enpty "extension_data", in
t he extended server hello.

Note that if new cipher suites are added that do not use HVAC, and
the session negotiates one of these cipher suites, this extension
will have no effect. It is strongly recomended that any new ci pher
suites using other MACs consider the MAC size as an integral part of
the cipher suite definition, taking into account both security and
bandw dt h consi derati ons.

I f HVAC truncation has been successfully negotiated during a TLS
handshake, and the negotiated ci pher suite uses HVAC, both the client
and the server pass this fact to the TLS record | ayer along with the
ot her negotiated security paranmeters. Subsequently during the
session, clients and servers MJST use truncated HVACs, cal cul ated as
specified in [HVAC]. That is, C pherSpec.hash_size is 10 bytes, and
only the first 10 bytes of the HVAC output are transnmitted and
checked. Note that this extension does not affect the cal cul ation of
the PRF as part of handshaking or key derivation.

The negotiated HMAC truncation size applies for the duration of the
sessi on including session resunptions.

3.6. Certificate Status Request

Constrained clients may wish to use a certificate-status protocol
such as OCSP [OCSP] to check the validity of server certificates, in
order to avoid transnission of CRLs and therefore save bandw dth on
constrai ned networks. This extension allows for such information to
be sent in the TLS handshake, saving roundtrips and resources.

In order to indicate their desire to receive certificate status
i nformation, clients MAY include an extension of type
"status_request" in the (extended) client hello. The
"extension_data" field of this extension SHALL contain
"CertificateStatusRequest" where:

Bl ake- W1l son, et. al. St andar ds Track [Page 16]

RFC 3546 TLS Ext ensi ons June 2003

struct {
CertificateStatusType status_type;
sel ect (status_type) {
case ocsp: OCSPSt at usRequest ;
} request;
} CertificateStatusRequest;

enum { ocsp(l), (255) } CertificateStatusType;

struct {
Responder | D responder _id_list<0..2"16-1>
Ext ensi ons request _ext ensi ons;

} OCSPSt at usRequest ;

opaque Responder| D<1..2"16- 1>;
opaque Extensions<0..2"16-1>

In the OCSPSt at usRequest, the "Responderl| Ds" provides a |ist of OCSP
responders that the client trusts. A zero-length "responder _id_list"
sequence has the special neaning that the responders are inplicitly
known to the server - e.g., by prior arrangenent. "Extensions" is a
DER encodi ng of OCSP request extensions.

Bot h "Responder| D' and "Extensions" are DER-encoded ASN. 1 types as
defined in [OCSP]. "Extensions" is inported from[PKIX . A zero-

l ength "request_extensions"” value neans that there are no extensions
(as opposed to a zero-length ASN. 1 SEQUENCE, which is not valid for
t he "Extensions" type).

In the case of the "id-pkix-ocsp-nonce" OCSP extension, [OCSP] is
uncl ear about its encoding; for clarification, the nonce MIST be a
DER- encoded OCTET STRI NG which is encapsul ated as another OCTET
STRING (note that inplenentations based on an existing OCSP client
will need to be checked for confornmance to this requirenent).

Servers that receive a client hello containing the "status_request™
extension, MAY return a suitable certificate status response to the
client along with their certificate. |If OCSP is requested, they
SHOULD use the information contained in the extension when sel ecting
an OCSP responder, and SHOULD i ncl ude request _extensions in the OCSP
request.

Servers return a certificate response along with their certificate by
sending a "CertificateStatus" nmessage i medi ately after the
"Certificate" nessage (and before any "ServerKeyExchange" or
"CertificateRequest" nmessages). |If a server returns a

Bl ake- W1l son, et. al. St andar ds Track [Page 17]

RFC 3546 TLS Ext ensi ons June 2003

"CertificateStatus" nessage, then the server MJST have included an
extensi on of type "status_request” with enpty "extension_data" in the
ext ended server hello.

struct {
CertificateStatusType status_type;
sel ect (status_type) {
case ocsp: OCSPResponse;
} response;
} CertificateStatus;

opaque OCSPResponse<l..2724-1>

An "ocsp_response” contains a conplete, DER-encoded OCSP response
(using the ASN. 1 type OCSPResponse defined in [OCSP]). Note that
only one OCSP response may be sent.

The "CertificateStatus" nessage is conveyed using the handshake
nmessage type "certificate_status"

Note that a server MAY al so choose not to send a "CertificateStatus”
nmessage, even if it receives a "status_request"” extension in the
client hell o nessage.

Note in addition that servers MJST NOT send the "CertificateStatus"
nmessage unless it received a "status_request" extension in the client
hel |l o nessage.

Clients requesting an OCSP response, and receiving an OCSP response
ina "CertificateStatus" nessage MJST check the OCSP response and
abort the handshake if the response is not satisfactory.

4. Error Alerts

This section defines new error alerts for use with the TLS extensions
defined in this docunent.

The following new error alerts are defined. To avoid "breaking"
existing clients and servers, these alerts MJST NOT be sent unless
the sending party has received an extended hello nessage fromthe
party they are conmmuni cating with.

- "unsupported_extension" - this alert is sent by clients that
recei ve an extended server hell o containing an extension that they
did not put in the corresponding client hello (see Section 2.3).
This nmessage is always fatal.

Bl ake- W1l son, et. al. St andar ds Track [Page 18]

RFC 3546 TLS Ext ensi ons June 2003

- "unrecogni zed_nane" - this alert is sent by servers that receive a
server _nane extension request, but do not recognize the server
nane. This nessage MAY be fatal

- "certificate_unobtainable" - this alert is sent by servers who are
unable to retrieve a certificate chain fromthe URL supplied by
the client (see Section 3.3). This nessage MAY be fatal - for

exanple if client authentication is required by the server for the
handshake to continue and the server is unable to retrieve the
certificate chain, it my send a fatal alert.

- "bad_certificate_status_response" - this alert is sent by clients
that receive an invalid certificate status response (see Section
3.6). This nessage is always fatal.

- "bad_certificate_hash_value" - this alert is sent by servers when
a certificate hash does not match a client provided
certificate_hash. This nessage is always fatal

These error alerts are conveyed using the follow ng syntax:

enum {
cl ose_notify(0),
unexpect ed_nessage(10),
bad_record_mac(20),
decryption_failed(21),
record_overfl ow 22),
deconpr essi on_fail ure(30),
handshake_fail ure(40),
/* 41 is not defined, for historical reasons */
bad_certificate(42),
unsupported_certificate(43),
certificate_revoked(44),
certificate_expired(45),
certificate_unknown(46),
illegal paraneter(47),
unknown_ca(48),
access_deni ed(49),
decode_error (50),
decrypt _error(51),
export _restriction(60),
pr ot ocol _version(70),
insufficient_security(71),
i nternal _error(80),
user _cancel ed(90),
no_renegoti ati on(100),
unsupported_extensi on(110), /[* new */
certificate_unobtainable(111), /[* new */

Bl ake- W1l son, et. al. St andar ds Track [Page 19]

RFC 3546 TLS Ext ensi ons June 2003

unr ecogni zed_nane(112), /* new */
bad_certificate_status_response(113), /* new */
bad _certificate_hash_val ue(114), [* new */
(255)

} AlertDescription;

5. Procedure for Defining New Extensions

Traditionally for Internet protocols, the Internet Assigned Nunbers
Authority (1 ANA) handl es the allocation of new values for future
expansi on, and RFCs usually define the procedure to be used by the
| ANA. However, there are subtle (and not so subtle) interactions
that nmay occur in this protocol between new features and existing
features which may result in a significant reduction in overal
security.

Therefore, requests to define new extensions (including assigning
extensi on and error alert nunbers) nust be approved by | ETF Standards
Act i on.

The foll owi ng considerations should be taken into account when
desi gni ng new ext ensi ons:

- Al of the extensions defined in this docunment follow the
convention that for each extension that a client requests and that
the server understands, the server replies with an extension of
the sanme type

- Sonme cases where a server does not agree to an extension are error
conditions, and sone sinply a refusal to support a particular
feature. In general error alerts should be used for the forner
and a field in the server extension response for the latter.

- Extensions should as far as possible be designed to prevent any
attack that forces use (or non-use) of a particular feature by
mani pul ati on of handshake messages. This principle should be
foll owed regardl ess of whether the feature is believed to cause a
security problem

Oten the fact that the extension fields are included in the

i nputs to the Finished nessage hashes will be sufficient, but
extrene care is needed when the extension changes the neani ng of
nmessages sent in the handshake phase. Designers and inpl enentors
shoul d be aware of the fact that until the handshake has been
aut henticated, active attackers can nodify nessages and insert,
remove, or replace extensions.

Bl ake- W1l son, et. al. St andar ds Track [Page 20]

RFC 3546 TLS Ext ensi ons June 2003

- It would be technically possible to use extensions to change maj or
aspects of the design of TLS; for exanple the design of cipher
suite negotiation. This is not recommended; it would be nore
appropriate to define a new version of TLS - particularly since
the TLS handshake al gorithns have specific protection against
version roll back attacks based on the version nunber, and the
possibility of version rollback should be a significant
consi deration in any nmgjor design change.

6. Security Considerations

Security considerations for the extension nmechanismin general, and
t he design of new extensions, are described in the previous section.
A security analysis of each of the extensions defined in this
docunent is given bel ow

In general, inplenmenters should continue to nonitor the state of the
art, and address any weaknesses identified.

Addi tional security considerations are described in the TLS 1.0 RFC
[TLS].

6.1. Security of server_nane

If a single server hosts several domains, then clearly it is
necessary for the owners of each domain to ensure that this satisfies
their security needs. Apart fromthis, server_nane does not appear
to introduce significant security issues.

| npl erent ati ons MUST ensure that a buffer overfl ow does not occur
what ever the values of the Iength fields in server_nane.

Al t hough this docunent specifies an encoding for internationalized
hostnanes in the server_name extension, it does not address any
security issues associated with the use of internationalized

hostnanes in TLS - in particular, the consequences of "spoofed" namnes
that are indistinguishable from anot her name when di spl ayed or
printed. It is recommended that server certificates not be issued

for internationalized hostnanes unl ess procedures are in place to
mtigate the risk of spoofed hostnanes.

6.2. Security of max_fragnent_|ength

The maxi mum fragnment |ength takes effect inmediately, including for
handshake nessages. However, that does not introduce any security
conplications that are not already present in TLS, since [TLS]
requires inplenentations to be able to handle fragnented handshake
nessages.

Bl ake- W1 son, et. al. St andards Track [Page 21]

RFC 3546 TLS Ext ensi ons June 2003

Note that as described in section 3.2, once a non-null cipher suite
has been activated, the effective maxi rumfragnment | ength depends on
the ci pher suite and conpression nethod, as well as on the negoti ated
max_fragnent | ength. This nust be taken into account when sizing
buffers, and checking for buffer overfl ow

6.3. Security of client_certificate_url
There are two mgjor issues with this extension.

The first major issue is whether or not clients should include
certificate hashes when they send certificate URLs.

When client authentication is used *w thout* the
client_certificate_url extension, the client certificate chain is
covered by the Finished nessage hashes. The purpose of including
hashes and checki ng them agai nst the retrieved certificate chain, is
to ensure that the sanme property holds when this extension is used -
i.e., that all of the information in the certificate chain retrieved
by the server is as the client intended.

On the other hand, onitting certificate hashes enables functionality
that is desirable in some circunstances - for exanple clients can be
issued daily certificates that are stored at a fixed URL and need not
be provided to the client. dients that choose to omt certificate
hashes should be aware of the possibility of an attack in which the
attacker obtains a valid certificate on the client’s key that is
different fromthe certificate the client intended to provide.

Al t hough TLS uses both MD5 and SHA-1 hashes in several other places,
this was not believed to be necessary here. The property required of
SHA-1 is second pre-inage resistance.

The second najor issue is that support for client_certificate_url

i nvol ves the server acting as a client in another URL protocol. The
server therefore beconmes subject to many of the sane security
concerns that clients of the URL scheme are subject to, with the
added concern that the client can attenpt to pronpt the server to
connect to sone, possibly weird-1ooking URL.

In general this issue nmeans that an attacker mght use the server to
indirectly attack another host that is vulnerable to some security
flaw. It also introduces the possibility of denial of service
attacks in which an attacker nakes nany connections to the server,
each of which results in the server attenpting a connection to the
target of the attack

Bl ake- W1 son, et. al. St andards Track [Page 22]

RFC 3546 TLS Ext ensi ons June 2003

Note that the server may be behind a firewall or otherw se able to
access hosts that would not be directly accessible fromthe public
Internet; this could exacerbate the potential security and denial of
servi ce problens described above, as well as allow ng the existence
of internal hosts to be confirmed when they woul d ot herw se be

hi dden.

The detail ed security concerns involved will depend on the URL
schenmes supported by the server. |In the case of HITP, the concerns
are sinmlar to those that apply to a publicly accessible HTTP proxy
server. |In the case of HITPS, the possibility for |oops and

deadl ocks to be created exists and should be addressed. 1In the case
of FTP, attacks sinmilar to FTP bounce attacks ari se.

As a result of this issue, it is RECOMVENDED that the
client_certificate_url extension should have to be specifically
enabl ed by a server adm nistrator, rather than being enabl ed by
default. It is also RECOMMENDED t hat URI protocols be enabled by the
admi nistrator individually, and only a mninmal set of protocols be
enabl ed, with unusual protocols offering limted security or whose
security is not well-understood being avoi ded.

As discussed in [URI], URLs that specify ports other than the default
may cause problens, as nmay very long URLs (which are nore likely to
be useful in exploiting buffer overflow bugs).

Al so note that HTTP caching proxies are commbn on the Internet, and
sone proxies do not check for the |atest version of an object
correctly. |If a request using HITP (or another caching protocol)
goes through a m sconfigured or otherw se broken proxy, the proxy may
return an out-of-date response.

6.4. Security of trusted_ca_keys

It is possible that which CA root keys a client possesses could be
regarded as confidential information. As a result, the CA root key
i ndi cati on extension should be used with care.

The use of the SHA-1 certificate hash alternative ensures that each
certificate is specified unanbi guously. As for the previous
extension, it was not believed necessary to use both MD5 and SHA-1
hashes.

6.5. Security of truncated_hmac
It is possible that truncated MACs are weaker than "un-truncated"

MACs. However, no significant weaknesses are currently known or
expected to exist for HVAC with MD5 or SHA-1, truncated to 80 bhits.

Bl ake- W1l son, et. al. St andar ds Track [Page 23]

RFC 3546 TLS Ext ensi ons June 2003

Note that the output length of a MAC need not be as long as the

I ength of a synmetric cipher key, since forging of MAC val ues cannot
be done off-line: in TLS, a single failed MAC guess will cause the

i medi ate termination of the TLS session

Since the MAC algorithmonly takes effect after the handshake
nmessages have been authenticated by the hashes in the Finished
nmessages, it is not possible for an active attacker to force
negotiation of the truncated HMAC extension where it woul d not

ot herwi se be used (to the extent that the handshake authentication is
secure). Therefore, in the event that any security problem were
found with truncated HVAC in future, if either the client or the
server for a given session were updated to take into account the
problem they would be able to veto use of this extension

6.6. Security of status_request
If a client requests an OCSP response, it must take into account that
an attacker’s server using a conprom sed key could (and probably
woul d) pretend not to support the extension. A client that requires
OCSP val idation of certificates SHOULD either contact the OCSP server
directly in this case, or abort the handshake.
Use of the OCSP nonce request extension (id-pkix-ocsp-nonce) may
i nprove security against attacks that attenpt to replay OCSP
responses; see section 4.4.1 of [OCSP] for further details.

7. Internationalization Considerations
None of the extensions defined here directly use strings subject to
| ocalization. Domain Narme System (DNS) hostnanes are encoded using
UTF-8. |If future extensions use text strings, then
i nternationalization should be considered in their design.

8. | ANA Consi derations

The M ME type "application/pkix-pkipath" has been regi stered by the
| ANA with the follow ng tenplate:

To: ietf-types@ana.org Subject: Registration of MM nedia type
appl i cati on/ pki x- pki pat h

M ME nedi a type nane: application
M ME subtype nane: pki x-pki path

Requi red paraneters: none

Bl ake- W1l son, et. al. St andar ds Track [Page 24]

RFC 3546 TLS Ext ensi ons June 2003

Optional paraneters: version (default value is "1")

Encodi ng consi der ati ons:

This MME type is a DER encoding of the ASN. 1 type Pki Path,

defined as foll ows:
Pki Path ::= SEQUENCE OF Certificate
Pki Path is used to represent a certification path. Wthin the
sequence, the order of certificates is such that the subject of
the first certificate is the issuer of the second certificate,
etc.

This is identical to the definition that will be published in
[X509-4t h-TCl1]; note that it is different fromthat in [X509-4th].

Al Certificates MUST conformto [PKIX]. (This should be
interpreted as a requirenment to encode only PKI X-conf or nant
certificates using this type. It does not necessarily require
that all certificates that are not strictly PKIX-conformant nust
be rejected by relying parties, although the security consequences
of accepting any such certificates should be consi dered
carefully.)

DER (as opposed to BER) encoding MJST be used. |If this type is
sent over a 7-bit transport, base64 encodi ng SHOULD be used.

Security considerations:
The security considerations of [X509-4th] and [PKIX] (or any
updates to them) apply, as well as those of any protocol that uses
this type (e.g., TLS)

Note that this type only specifies a certificate chain that can be
assessed for validity according to the relying party’s existing
configuration of trusted CAs; it is not intended to be used to
speci fy any change to that configuration

I nteroperability considerations:
No specific interoperability problens are known with this type,
but for recommendations relating to X 509 certificates in general
see [PKI X].

Publ i shed specification: this meno, and [PKIX].
Applications which use this nedia type: TLS. It may al so be used by

ot her protocols, or for general interchange of PKIX certificate
chai ns.

Bl ake- W1l son, et. al. St andar ds Track [Page 25]

RFC 3546 TLS Ext ensi ons June 2003

10.

Addi tional information:

Magi ¢ nunber (s): DER-encoded ASN. 1 can be easily recogni zed.
Further parsing is required to distinguish fromother ASN. 1
types.

File extension(s): .pkipath

Maci nt osh File Type Code(s): not specified

Person & ennil address to contact for further information:
Magnus Nystrom <magnhus@ sasecurity. conp

I nt ended usage: COMVON

Aut hor/ Change control |l er
Magnus Nystrom <magnhus@ sasecurity. conp

Intell ectual Property Rights

The | ETF takes no position regarding the validity or scope of any
intellectual property or other rights that m ght be clained to
pertain to the inplenentation or use of the technol ogy described in
this docunent or the extent to which any |icense under such rights

m ght or might not be available; neither does it represent that it
has nade any effort to identify any such rights. Information on the
| ETF s procedures with respect to rights in standards-track and
standards-rel ated docunentation can be found in RFC 2028. Copies of
clainms of rights nmade avail able for publication and any assurances of
licenses to be made available, or the result of an attenpt nade to
obtain a general license or pernission for the use of such
proprietary rights by inplenmentors or users of this specification can
be obtained fromthe | ETF Secretari at.

The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights which may cover technology that may be required to practice
this docunent. Please address the information to the | ETF Executive
Director.

Acknow edgmnent s

The authors wish to thank the TLS Wirking Group and the WAP Security
G oup. This docunent is based on discussion within these groups.

Bl ake- W1l son, et. al. St andar ds Track [Page 26]

RFC 3546

TLS Ext ensi ons June 2003

11. Normati ve References

[HVAC]

[HTTP]

[1 DNA]

[KEYWORDS]

[OCSF]

[PKI OP]

[PKI X]

[TLS]

[URI]

[UTFS8]

[X509- 4t h]

Bl ake- W son,

et.

Krawczyk, H., Bellare, M and R Canetti, "HVAC
Keyed- hashi ng for message authentication", RFC 2104,
February 1997.

Fielding, R, Cettys, J., Mgul, J., Frystyk, H
Masinter, L., Leach, P. and T. Berners-Lee, "Hypertext
Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

Faltstrom P., Hoffrman, P. and A. Costell o,
"Internationalizing Domain Nanes in Applications
(I DNA) ", RFC 3490, March 2003.

Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119, March 1997.

Myers, M, Ankney, R, Mlpani, A, Glperin, S and
C. Adans, "Internet X 509 Public Key Infrastructure:
Online Certificate Status Protocol - OCSP', RFC 2560,
June 1999.

Housl ey, R and P. Hoffrman, "Internet X 509 Public Key
Infrastructure - Operation Protocols: FTP and HTTP',
RFC 2585, May 1999.

Housl ey, R, Polk, W, Ford, W and D. Solo, "Internet
Public Key Infrastructure - Certificate and
Certificate Revocation List (CRL) Profile", RFC 3280,
April 2002

Dierks, T. and C. Allen, "The TLS Protocol Version
1.0", RFC 2246, January 1999.

Berners-Lee, T., Fielding, R and L. Masinter,
"Uni form Resource Identifiers (URI): Ceneric Syntax",
RFC 2396, August 1998.

Yergeau, F., "UTF-8, a transformation format of |SO
10646", RFC 2279, January 1998.

| TUT Recommendation X. 509 (2000) | SO I EC 9594-
8: 2001, "Information Systenms - Open Systens
Interconnection - The Directory: Public key and
attribute certificate franeworks."

al . St andards Track [Page 27]

RFC 3546

12.

13.

[X509- 4t h- TC1]

TLS Ext ensi ons June 2003

| TUT Recommendati on X 509(2000) Corrigendum 1(2001) |
| SO | EC 9594- 8: 2001/ Cor . 1: 2002, Techni cal Corri gendum
1 to | SO EC 9594: 8: 2001.

I nformati ve Ref erences

[KERB]

[MAI LI NG LI ST]

[AESSUI TES]

Medvi nsky, A. and M Hur, "Addition of Kerberos Ci pher
Suites to Transport Layer Security (TLS)", RFC 2712,
Oct ober 1999.

J. Mkkelsen, R Eberhard, and J. Kistler, "GCeneral
CientHell o extension nechani smand virtual hosting,"
ietf-tls mailing list posting, August 14, 2000.

Chown, P., "Advanced Encryption Standard (AES)
Ci phersuites for Transport Layer Security (TLS)", RFC
3268, June 2002.

Aut hor s’ Addresses

Si non Bl ake- W | son

BCI

EMai | : sbl akewi | son@ci sse. com

Magnus Nystrom

RSA Security

EMai | : magnus@ sasecurity.com

Davi d Hopwood

| ndependent Consul t ant
EMai | : davi d. hopwood@et net . co. uk

Jan M kkel sen

Transacti onwar e

EMai | : janm@ransacti onware. com

Tim Wi ght
Vodaf one

EMai | : tinothy.wight@odaf one.com

Bl ake- W I son, et.

al . St andar ds Track [Page 28]

RFC 3546 TLS Ext ensi ons June 2003

14.

Ful I Copyright Statenent
Copyright (C) The Internet Society (2003). Al Rights Reserved.

Thi s docunent and translations of it nmay be copied and furnished to
ot hers, and derivative works that comment on or otherw se explain it
or assist inits inplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng I nternet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into |Ianguages other than
Engli sh.

The limted perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Acknow edgenent

Fundi ng for the RFC Editor function is currently provided by the
I nternet Society.

Bl ake- W1l son, et. al. St andar ds Track [Page 29]

