Net wor k Wor ki ng Group J. Elson

Request for Comments: 3507 A. Cerpa
Cat egory: I nfornmational UCLA
April 2003

Internet Content Adaptation Protocol (I CAP)
Status of this Meno

This meno provides information for the Internet conmunity. |t does
not specify an Internet standard of any kind. Distribution of this
meno is unlimted.

Copyright Notice
Copyright (C) The Internet Society (2003). Al Rights Reserved.
| ESG Not e

The Open Pl uggabl e Services (OPES) working group has been chartered
to produce a standards track protocol specification for a protocol
intended to performthe sane of functions as | CAP. However, since
ICAP is already in wi despread use the | ESG believes it is appropriate
to docunent existing usage by publishing the | CAP specification as an
i nformati onal docunent. The | ESG al so notes that | CAP was devel oped
before the publication of RFC 3238 and therefore does not address the
architectural and policy issues described in that docunent.

Abstract

| CAP, the Internet Content Adaption Protocol, is a protocol ained at
provi di ng sinple object-based content vectoring for HITP servi ces.

| CAP is, in essence, a lightweight protocol for executing a "renpote
procedure call" on HITP nessages. It allows ICAP clients to pass
HTTP nmessages to | CAP servers for some sort of transformation or

ot her processing ("adaptation"”). The server executes its
transformati on service on nessages and sends back responses to the
client, usually with nodified nmessages. Typically, the adapted
nmessages are either HITP requests or HITP responses.

El son & Cerpa I nf or mat i onal [Page 1]

RFC 3507

Tabl e of Contents

1.
2.
3.

El son & Cerpa

| CAP April 2003
Introducti on. 3
Termnol Ogy.ot 5
I CAP Overall QOperation......... 8
3.1 Request Modification................ 8
3.2 Response Modification............................ 10
Protocol SemanticCsS.......... 11
4.1 General Operation.......... 11
4.2 FCAP URI S. . oo 11
4.3 I CAP Headers. i 12
4.3.1 Headers Common to Requests and
Responses. 12
4.3.2 Request Headers.......................... 13
4.3.3 Response Headers......................... 14
4.3. 4 | CAP- Rel at ed Headers in HITP
MBSSAgEeS. . . . o 15
4.4 | CAP Bodi es: Encapsul ati on of HITP
MBS SaAgES. . . v it 16
4.4.1 Expected Encapsul ated Sections........... 16
4.4.2 Encapsul ated HTTP Headers................ 18
4.5 Message Preview. 18
4.6 "204 No Content" Responses outside of
Previ ews. 22
4.7 | STag Response Header............. 22
4.8 Request Modification Mode. 23
4.8.1 Request. 23
4.8.2 Response. 24
4.8.3 Exanples. 24
4.9 Response Modification Mode....................... 27
4.9.1 Request. 27
4.9.2 Response. 27
4.9.3 Exanples. 28
4,10 OPTIONS Method. 29
4.10.1 OPTIONS request., 29
4.10.2 OPTIONS response.t 30
4.10.3 OPTIONS exanples. 33
Cachi Ng. ... 33
Inplementation Notes. 34
6.1 Vectoring Points............ ... i, 34
6.2 Application Level Errors.......... 35
6.3 Use of Chunked Transfer-Encoding................. 37
6.4 Distinct URIs for Distinct Services.............. 37
Security Considerations............ 37
7.1 Authentication......... 37
7.2 Encryption. 38
7.3 Service Validation.......... 38
Motivations and Design Alternatives.................... 39
| nf or mat i onal [Page 2]

RFC 3507 | CAP April 2003

8.1 To Be HTTP, or Not to Be............. 39
8.2 Mandatory Use of Chunking........................ 39

8.3 Use of the null-body directive in the
Encapsulated header............ 40
9. Ref erences. 40
10. Contributors....... 41
Appendix A BNF Granmar for 1 CAP Messages.................. 45
Aut hor s’ AddresSSesS. . .. i e 48
Ful I Copyright Statement............... 49

1. Introduction

As the Internet grows, so does the need for scal abl e I nternet
services. Popular web servers are asked to deliver content to
hundreds of mllions of users connected at ever-increasing

bandw dths. The nodel of centralized, nonolithic servers that are
responsi ble for all aspects of every client’s request seens to be
reaching the end of its useful life.

To keep up with the growmh in the nunmber of clients, there has been a
nmove towards architectures that scale better through the use of
replication, distribution, and caching. On the content provider

side, replication and | oad-bal anci ng techni ques all ow t he burden of
client requests to be spread out over a nyriad of servers. Content
provi ders have al so begun to depl oy geographically diverse content
distribution networks that bring origin-servers closer to the "edge"
of the network where clients are attached. These networks of
distributed origin-servers or "surrogates" allow the content provider
to distribute their content whilst retaining control over the
integrity of that content. The distributed nature of this type of
depl oynment and the proximty of a given surrogate to the end-user
enabl es the content provider to offer additional services to a user
whi ch m ght be based, for exanple, on geography where this woul d have
been difficult with a single, centralized service.

| CAP, the Internet Content Adaption Protocol, is a protocol ained at
provi di ng sinple object-based content vectoring for HITP servi ces.

| CAP is, in essence, a lightweight protocol for executing a "renpote
procedure call" on HITP nessages. It allows ICAP clients to pass
HTTP nmessages to | CAP servers for some sort of transformation or

ot her processing ("adaptation”). The server executes its
transformati on service on nessages and sends back responses to the
client, usually with nodified nmessages. The adapted nmessages may be
ei ther HTTP requests or HITP responses. Though transfornati ons may
be possible on other non-HTTP content, they are beyond the scope of
thi s docunent.

El son & Cerpa I nf or mat i onal [Page 3]

RFC 3507 | CAP April 2003

This type of Renpte Procedure Call (RPC) is useful in a nunber of
ways. For exanpl e:

o Sinple transformations of content can be perforned near the edge
of the network instead of requiring an updated copy of an object
froman origin server. For exanple, a content provider mght want
to provide a popular web page with a different adverti senent every
time the page is viewed. Currently, content providers inplenent
this policy by nmarking such pages as non-cachabl e and tracking
user cookies. This inposes additional |oad on the origin server
and the network. In our architecture, the page could be cached
once near the edges of the network. These edge caches can then
use an I CAP call to a nearby ad-insertion server every tine the
page is served to a client.

O her such transformati ons by edge servers are possible, either

wi th cooperation fromthe content provider (as in a content

di stribution network), or as a val ue-added service provided by a
client’s network provider (as in a surrogate). Exanples of these
ki nds of transfornmations are translation of web pages to different
human | anguages or to different formats that are appropriate for
speci al physical devices (e.g., PDA-based or cell-phone-based

br owsers).

0 Surrogates or origin servers can avoid perform ng expensive
operations by shipping the work off to other servers instead.
This hel ps distribute | oad across multiple nachines. For exanpl e,
consi der a user attenpting to downl oad an executable programvia a
surrogate (e.g., a caching proxy). The surrogate, acting as an
| CAP client, can ask an external server to check the executable
for viruses before accepting it into its cache.

o Firewalls or surrogates can act as | CAP clients and send outgoi ng
requests to a service that checks to make sure the URI in the
request is allowed (for exanple, in a systemthat allows parenta

control of web content viewed by children). |In this case, it is a
request that is being adapted, not an object returned by a
response.

In all of these exanples, ICAP is helping to reduce or distribute the

load on origin servers, surrogates, or the network itself. In sone
cases, |CAP facilitates transformati ons near the edge of the network,
all owi ng greater cachability of the underlying content. In other

exanpl es, devices such as origin servers or surrogates are able to
reduce their | oad by distributing expensive operations onto other
machines. |In all cases, |ICAP has also created a standard interface
for content adaptation to allow greater flexibility in content
distribution or the addition of value added services in surrogates.

El son & Cerpa I nf or mat i onal [Page 4]

RFC 3507 | CAP April 2003

There are two major conponents in our architecture:
1. Transaction senantics -- "How do | ask for adaptation?"

2. Control of policy -- "When am | supposed to ask for adaptation
what kind of adaptation do | ask for, and from where?"

Currently, I CAP defines only the transaction semantics. For exanpl e,
this docunment specifies how to send an HTTP nessage from an | CAP
client to an I CAP server, specify the URI of the | CAP resource
requested along with other resource-specific paranmeters, and receive
t he adapted nessage.

Al t hough a necessary buil di ng-bl ock, this wire-protocol defined by
|CAP is of limted use without the second part: an acconpanying
application framework in which it operates. The nore difficult
policy issue is beyond the scope of the current | CAP protocol, but is
pl anned in future work.

In initial inplenmentations, we expect that inplenmentation-specific
manual configuration will be used to define policy. This includes
the rules for recogni zi ng nessages that require adaptation, the URI's
of avail abl e adaptation resources, and so on. For |ICAP clients and
servers to interoperate, the exact nethod used to define policy need
not be consistent across inplenmentations, as long as the policy
itself is consistent.

| MPORTANT:
Note that at this tinme, in the absence of a policy-framework, it
is strongly RECOMVENDED t hat transformations SHOULD only be
performed on nessages with the explicit consent of either the
content-provider or the user (or both). Deploynent of
transformati on services wi thout the consent of either |eads to, at
best, unpredictable results. For nore discussion of these issues,
see Section 7.

Once the full extent of the typical policy decisions are nore fully
under st ood through experience with these initial inplenmentations,
later followons to this architecture nmay define an additional policy
control protocol. This future protocol may all ow a standard policy
definition interface conplenentary to the | CAP transaction interface
defined here.

2. Term nol ogy
The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",

"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in BCP 14, RFC 2119 [2].

El son & Cerpa I nf or mat i onal [Page 5]

RFC 3507 | CAP April 2003

The special term nology used in this docunent is defined below. The
majority of these terns are taken as-is fromHITP/1.1 [4] and are
reproduced here for reference. A thorough understanding of HTTP/1.1
is assumed on the part of the reader

connecti on:

A transport layer virtual circuit established between two prograns
for the purpose of comrunication

nessage:
The basic unit of HITP communi cation, consisting of a structured
sequence of octets matching the syntax defined in Section 4 of
HTTP/ 1.1 [4] and transnitted via the connection

request:
An HTTP request nessage, as defined in Section 5 of HTTP/ 1.1 [4].

response:
An HTTP response nessage, as defined in Section 6 of HTTP/ 1.1 [4].

resource:
A network data object or service that can be identified by a URI,
as defined in Section 3.2 of HITP/1.1 [4]. Resources may be
available in multiple representations (e.g., multiple | anguages,
data formats, size, resolutions) or vary in other ways

client:
A program that establishes connections for the purpose of sending
requests.

server:

An application programthat accepts connections in order to

servi ce requests by sendi ng back responses. Any given program nmay
be capabl e of being both a client and a server; our use of these
terms refers only to the role being performed by the programfor a
particul ar connection, rather than to the progranis capabilities
in general. Likew se, any server may act as an origin server,
surrogate, gateway, or tunnel, switching behavi or based on the

nat ure of each request.

origin server:
The server on which a given resource resides or is to be created.

El son & Cerpa I nf or mat i onal [Page 6]

RFC 3507 | CAP April 2003

pr oxy:
An internedi ary program which acts as both a server and a client
for the purpose of nmaking requests on behal f of other clients.
Requests are serviced internally or by passing themon, wth
possi bl e translation, to other servers. A proxy MJST inpl ement
both the client and server requirenents of this specification

cache:
A program s |local store of response nessages and the subsystem
that controls its nmessage storage, retrieval, and deletion. A
cache stores cachabl e responses in order to reduce the response
time and network bandw dth consunption on future, equival ent
requests. Any client or server may include a cache, though a
cache cannot be used by a server that is acting as a tunnel.

cachabl e:
A response is cachable if a cache is allowed to store a copy of
the response nessage for use in answering subsequent requests.
The rules for determining the cachability of HITP responses are
defined in Section 13 of [4]. Even if a resource is cachable,
there may be additional constraints on whether a cache can use the
cached copy for a particular request.

surrogate:
A gateway co-located with an origin server, or at a different
point in the network, delegated the authority to operate on behalf
of, and typically working in close co-operation with, one or nore
origin servers. Responses are typically delivered from an
i nternal cache. Surrogates may derive cache entries fromthe
origin server or fromanother of the origin server’s del egates.
In sone cases a surrogate may tunnel such requests.

Where cl ose co-operation between origin servers and surrogates

exi sts, this enables nodifications of sone protocol requirenents,

i ncluding the Cache-Control directives in [4]. Such nodifications
have yet to be fully specified.

Devi ces commonly known as "reverse proxies" and "(origin) server
accel erators" are both nore properly defined as surrogates.

New definitions:
| CAP resource:

Simlar to an HITP resource as descri bed above, but the URl refers
to an | CAP service that perforns adaptations of HTTP nessages.

El son & Cerpa I nf or mat i onal [Page 7]

RFC 3507 | CAP April 2003

| CAP server:
Simlar to an HITP server as described above, except that the
application services | CAP requests.

| CAP client:
A programthat establishes connections to | CAP servers for the
pur pose of sending requests. An ICAP client is often, but not
al ways, a surrogate acting on behalf of a user.

3. |1CAP Overall Operation

Before describing ICAP's semantics in detail, we will first give a
general overview of the protocol’s nmajor functions and expected uses.
As described earlier, |ICAP focuses on nodification of HITP requests
(Section 3.1), and nodification of HITP responses (Section 3.2).

3.1 Request Modification

In "request nodification" (regnod) node, an | CAP client sends an HTTP
request to an | CAP server. The |CAP server may then

1) Send back a nodified version of the request. The I CAP client may
then performthe nodified request by contacting an origin server;
or, pipeline the nodified request to another | CAP server for
further nodification.

2) Send back an HTTP response to the request. This is used to
provide information useful to the user in case of an error (e.g.,
"you sent a request to view a page you are not allowed to see").

3) Return an error.

| CAP clients MUST be able to handle all three types of responses.
However, in line with the guidance provided for HTTP surrogates in
Section 13.8 of [4], ICAP client inplementors do have flexibility in
handling errors. |If the ICAP server returns an error, the | CAP
client may (for exanple) return the error to the user, execute the
unadapted request as it arrived fromthe client, or re-try the

adapt ati on agai n.

W will illustrate this nethod with an exanpl e application: content
filtering. Consider a surrogate that receives a request froma
client for a web page on an origin server. The surrogate, acting as
an | CAP client, sends the client’s request to an | CAP server that
perforns URI-based content filtering. |f access to the requested UR
is allowed, the request is returned to the I CAP client unnodifi ed.
However, if the | CAP server chooses to disallow access to the
requested resources, it may either

El son & Cerpa I nf or mat i onal [Page 8]

RFC 3507 | CAP April 2003
1) Modify the request so that it points to a page containing an error
nmessage i nstead of the original UR
2) Return an encapsul ated HTTP response that indicates an HTTP error.
This nethod can be used for a variety of other applications; for
exanpl e, anonymi zation, nodification of the Accept: headers to handle
speci al device requirenents, and so forth.

Typi cal data fl ow

ori gi n-server

| /]\
||
5 | | 4
| |
\ |/ | 2
| CAP-client -------------- > | CAP-resource
(surrogate) S on | CAP-server
| 7]\ 3
||
6 | | 1
| |
V[/]
client

1. Aclient makes a request to a | CAP-capabl e surrogate (I CAP client)
for an object on an origin server

2. The surrogate sends the request to the | CAP server.

3. The | CAP server executes the | CAP resource’s service on the
request and sends the possibly nodified request, or a response to
the request back to the I CAP client.

If Step 3 returned a request:

4. The surrogate sends the request, possibly different from original
client request, to the origin server.

5. The origin server responds to request.

6. The surrogate sends the reply (fromeither the | CAP server or the
origin server) to the client.

El son & Cerpa I nf or mat i onal [Page 9]

RFC 3507 | CAP April 2003

3.2 Response Modification
In the "response nodification" (respnod) node, an | CAP client sends
an HITP response to an | CAP server. (The response sent by the | CAP
client typically has been generated by an origin server.) The |CAP
server may then
1) Send back a nodified version of the response.
2) Return an error.
The response nodification nethod is intended for post-processing
perfornmed on an HTTP response before it is delivered to a client.
Exanpl es include formatti ng HTM. for display on special devices,
human | anguage transl ation, virus checking, and so forth.
Typi cal data fl ow

ori gi n-server

| /1)
|
3 1 | 2
|
\ |/ | 4
| CAP-client ----------n--- > | CAP-resource
(surrogate) S on | CAP-server
| /\ 5
|
6 | | 1
|
\ |/ |
client

1. Aclient makes a request to a | CAP-capabl e surrogate (I CAP client)
for an object on an origin server

2. The surrogate sends the request to the origin server.
3. The origin server responds to request.

4. The | CAP-capabl e surrogate sends the origin server’s reply to the
| CAP server.

5. The | CAP server executes the | CAP resource’s service on the origin

server’'s reply and sends the possibly nodified reply back to the
| CAP client.

El son & Cerpa I nf or mat i onal [Page 10]

RFC 3507 | CAP April 2003

6. The surrogate sends the reply, possibly nodified fromthe original
origin server’s reply, to the client.

4. Protocol Semantics
4.1 General Operation

| CAP is a request/response protocol simlar in semantics and usage to
HTTP/ 1.1 [4]. Despite the simlarity, 1CAP is not HITP, nor is it an
application protocol that runs over HTTP. This neans, for exanple,
that | CAP nessages can not be forwarded by HITP surrogates. Qur
reasons for not building directly on top of HITP are di scussed in
Section 8. 1.

| CAP uses TCP/IP as a transport protocol. The default port is 1344,
but other ports may be used. The TCP flowis initiated by the |ICAP
client to a passively listening | CAP server.

| CAP nessages consist of requests fromclient to server and responses
fromserver to client. Requests and responses use the generic
nmessage format of RFC 2822 [3] -- that is, a start-line (either a
request line or a status line), a nunber of header fields (also known
as "headers"), an enpty line (i.e., a line with nothing preceding the
CRLF) indicating the end of the header fields, and a nessage-body.

The header |ines of an | CAP nessage specify the | CAP resource being
requested as well as other neta-data such as cache control

i nformati on. The nmessage body of an | CAP request contains the
(encapsul ated) HTTP nmessages that are being nodifi ed.

As in HTTP/ 1.1, a single transport connection MAY (perhaps even
SHOULD) be re-used for nultiple request/response pairs. The rules
for doing so in |ICAP are the same as described in Section 8.1.2.2 of
[4]. Specifically, requests are matched up with responses by

all owi ng only one outstanding request on a transport connection at a
time. Miltiple parallel connections MAY be used as in HTTP.

4.2 |ICAP URI's

Al'l | CAP requests specify the | CAP resource being requested fromthe
server using an ICAP URI. This MJST be an absolute URI that
specifies both the conplete hostnanme and the path of the resource
bei ng requested. For definitive information on URL syntax and
semantics, see "Uniform Resource Identifiers (URI): Generic Syntax
and Semantics," RFC 2396 [1], Section 3. The URI structure defined
by 1 CAP is roughly:

El son & Cerpa | nf or mat i onal [Page 11]

RFC 3507 | CAP April 2003

4.3

4. 3.

El s

| CAP_URI = Schene ":" Net_Path ["?" Query]
Scheme = "icap"

Net _Path = "//" Authority [Abs_Path]
Authority =] userinfo "@] host [":" port]

| CAP adds the new schene "icap" to the ones defined in RFC 2396. |If
the port is enpty or not given, port 1344 is assuned. An exanple
| CAP URI |ine might look Iike this:

i cap://icap. exanpl e. net: 2000/ servi ces/i cap-service-1

An | CAP server MJUST be able to recognize all of its hosts nanes,
i ncluding any aliases, local variations, and numeric |P addresses of
its interfaces.

Any arguments that an I CAP client wishes to pass to an | CAP service
to nodify the nature of the service MAY be passed as part of the

| CAP-URI, using the standard "?"-encoding of attribute-value pairs
used in HITP. For exanpl e:

i cap://icap. net/service?node=transl at e& ang=french
| CAP Headers

The followi ng sections define the valid headers for | CAP nmessages.
Section 4.3.1 descri bes headers conmon to both requests and
responses. Request-specific and response-specific headers are
described in Sections 4.3.2 and 4.3.3, respectively.

User - defi ned header extensions are allowed. |In conpliance with the
precedent established by the Internet mail format [3] and | ater
adopted by HTTP [4], all user-defined headers MJST follow the "X-"
nam ng convention ("X-Extension-Header: Foo"). |CAP inplenentations
MAY ignore any "X-" headers wi thout |oss of conpliance with the
protocol as defined in this docunent.

Each header field consists of a nane followed by a colon (":") and
the field value. Field nanes are case-insensitive. |CAP follows the
rul es describe in section 4.2 of [4].

1 Headers Commobn to Requests and Responses

The headers of all | CAP nessages MAY include the foll ow ng
directives, defined in | CAP the sanme as they are in HITP:

on & Cerpa | nf or mat i onal [Page 12]

RFC 3507 | CAP April 2003

Cache-Contro
Connection
Dat e

Expi res
Pragma
Trail er

Upgr ade

Note in particular that the "Transfer-Encodi ng" option is not
al l owed. The special transfer-encoding requirenents of | CAP bodies
are described in Section 4.4.

The Upgrade header MAY be used to negotiate Transport-Layer Security
on an | CAP connection, exactly as described for HITP/1.1 in [4].

The | CAP-specific headers defined are:
Encapsul ated (See Section 4.4)
4.3.2 Request Headers

Simlar to HTTP, | CAP requests MJST start with a request |ine that
contains a nethod, the conplete URI of the | CAP resource being
requested, and an | CAP version string. The current version nunber of
ICAP is "1.0".

This version of | CAP defines three nethods:

REQMOD - for Request Modification (Section 4.8)
RESPMOD - for Response Mdification (Section 4.9)
OPTIONS - to |l earn about configuration (Section 4.10)

The OPTI ONS nmet hod MJUST be inplenmented by all | CAP servers. Al
ot her nmet hods are optional and MAY be inpl ement ed.

User-defined extension nethods are allowed. Before attenpting to use
an extension nmethod, an | CAP client SHOULD use the OPTIONS nethod to
query the I CAP server’'s list of supported nmethods; see Section 4.10.
(I'f an | CAP server receives a request for an unknown nethod, it MJST
give a 501 error response as described in the next section.)

G ven the URI rules described in Section 4.2, a well-forned | CAP
request line looks like the follow ng exanpl e:

RESPMOD i cap: //icap. exanpl e. net/transl at e?node=french | CAP/ 1.0

El son & Cerpa I nf or mat i onal [Page 13]

RFC 3507 | CAP April 2003

A nunber of request-specific headers are allowed in | CAP requests,
following the sanme semantics as the correspondi ng HTTP request
headers (Section 5.3 of [4]). These are:

Aut hori zation

Al ow (see Section 4.6)

From (see Section 14.22 of [4])

Host (REQU RED in ICAP as it is in HITP/1.1)
Referer (see Section 14.36 of [4])
User - Agent

In addition to HTTP-1i ke headers, there are al so request headers
uni que to | CAP defi ned:

Previ ew (see Section 4.5)
4.3.3 Response Headers

| CAP responses MUST start with an I CAP status line, sinmlar in form
to that used by HITP, including the | CAP version and a status code.
For exanmpl e:

| CAP/ 1.0 200 K
Semantics of | CAP status codes in | CAP match the status codes defined
by HTTP (Section 6.1.1 and 10 of [4]), except where otherw se
indicated in this docunment; n.b. 100 (Section 4.5) and 204 (Section
4.6).
| CAP error codes that differ fromtheir HTTP counterparts are:
100 - Continue after |CAP Preview (Section 4.5).
204 - No nodifications needed (Section 4.6).
400 - Bad request.
404 - | CAP Service not found.

405 - Method not allowed for service (e.g., RESPMOD requested for
service that supports only REQVOD).

408 - Request tinmeout. | CAP server gave up waiting for a request
froman | CAP client.

500 - Server error. Error on the | CAP server, such as "out of disk
space".

El son & Cerpa | nf or mat i onal [Page 14]

RFC 3507 | CAP April 2003

501 - Method not inplenented. This response is illegal for an
OPTI ONS request since inplenentation of OPTIONS i s mandatory.

502 - Bad Gateway. This is an | CAP proxy and proxying produced an
error.

503 - Service overloaded. The | CAP server has exceeded a maxi num
connection limt associated with this service; the | CAP client
shoul d not exceed this limt in the future.

505 - | CAP version not supported by server

As in HTTP, the 4xx class of error codes indicate client errors, and
the 5xx class indicate server errors.

| CAP' s response-header fields allow the server to pass additional
information in the response that cannot be placed in the I CAP' s
status line.

A response-specific header is allowed in | CAP requests, follow ng the
same semantics as the corresponding HTTP response headers (Section
6.2 of [4]). This is:

Server (see Section 14.38 of [4])

In addition to HTTP-1i ke headers, there is also a response header
uni que to | CAP defi ned:

| STag (see Section 4.7)
4.3.4 | CAP-Rel ated Headers in HTTP Messages

When an | CAP-enabl ed HTTP surrogate makes an HITP request to an
origin server, it is often useful to advise the origin server of the
surrogate’s | CAP capabilities. Oigin servers can use this
information to nmodify its response accordingly. For exanple, an
origin server may choose not to insert an advertisenent into a page
if it knows that a downstream | CAP server can insert the ad instead.

Al t hough this | CAP specification can not nandate how HTTP is used in
comuni cati on between HTTP clients and servers, we do suggest a
convention: such headers (if used) SHOULD start with "X-1CAP". HTTP
clients with | CAP services SHOULD minimally include an "X-1 CAP-
Version: 1.0" header along with their application-specific headers.

El son & Cerpa I nf or mat i onal [Page 15]

RFC 3507 | CAP April 2003

4.4 | CAP Bodi es: Encapsul ati on of HITP Messages

The | CAP encapsul ati on nodel is a |ightweight nmeans of packagi ng any
nunber of HITP nmessage sections into an encapsul ati ng | CAP nessage-
body, in order to allow the vectoring of requests, responses, and
request/response pairs to an | CAP server

This is acconplished by concatenating interesting nessage parts
(encapsul at ED sections) into a single | CAP nessage- body (the
encapsul at | NG nessage). The encapsul ated sections may be the headers
or bodi es of HTTP nessages.

Encapsul at ed bodi es MJST be transferred using the "chunked"
transfer-codi ng described in Section 3.6.1 of [4]. However,
encapsul at ed headers MJST NOT be chunked. In other words, an | CAP
nmessage- body switches from bei ng non-chunked to chunked as the body
passes fromthe encapsul at ed header to encapsul ated body secti on.
(See Exanples in Sections 4.8.3 and 4.9.3.). The notivation behind
this decision is described in Section 8. 2.

4.4.1 The "Encapsul ated" Header

The of fset of each encapsul ated section’s start relative to the start
of the encapsul ating nmessage’s body is noted using the "Encapsul at ed"
header. This header MJST be included in every | CAP nessage. For
exanpl e, the header

Encapsul ated: reqg-hdr=0, res-hdr=45, res-body=100
i ndi cates a nessage that encapsul ates a group of request headers, a
group of response headers, and then a response body. Each of these
is included at the byte-offsets listed. The byte-offsets are in
deci mal notation for consistency with HTTP s Content-Length header

The special entity "null-body" indicates there is no encapsul at ed
body in the | CAP nessage.

The syntax of an Encapsul at ed header is:

encapsul at ed_header: "Encapsul ated: " encapsul ated_li st
encapsul ated_list: encapsul ated_entity |

encapsul ated_entity ", " encapsul ated_|i st
encapsul ated_entity: reghdr | reshdr | reqbody | resbody | optbody
reghdr = "reqg-hdr" "=" (decimal integer)
reshdr = "res-hdr" "=" (decimal integer)
regbody = { "reg-body" | "null-body" } "=" (decinal integer)
resbody = { "res-body" | "null-body" } "=" (decinal integer)
optbody = { "opt-body" | "null-body" } "=" (decinal integer)

El son & Cerpa I nf or mat i onal [Page 16]

RFC 3507 | CAP April 2003

There are semantic restrictions on Encapsul ated headers beyond the
syntactic restrictions. The order in which the encapsul ated parts
appear in the encapsul ati ng nmessage-body MJST be the sanme as the

order in which the parts are naned in the Encapsul ated header. In
other words, the offsets listed in the Encapsulated |ine MJST be
nmonotonically increasing. |In addition, the legal fornms of the

Encapsul at ed header depend on the nethod bei ng used (REQMOD, RESPMOD,
or OPTIONS). Specifically:

REQMOD request encapsulated list: [reghdr] regbody

REQMOD response encapsul ated _list: {[reghdr] regbody} |
{[reshdr] resbody}

RESPMOD request encapsul ated list: [reghdr] [reshdr] resbody

RESPMOD r esponse encapsul ated _list: [reshdr] resbody

OPTI ONS response encapsul ated_list: optbody

In the above grammar, note that encapsul ated headers are al ways
optional. At nobst one body per encapsul ated nessage is allowed. If
no encapsul ated body is presented, the "null-body" header is used
instead; this is useful because it indicates the | ength of the header
section.

Exanpl es of |egal Encapsul ated headers:

/* REQMOD request: This encapsul ated HTTP request’s headers start
* at offset 0; the HTTP request body (e.g., in a POST) starts
* at 412, */

Encapsul at ed: reqg-hdr=0, req-body=412

/* REQMOD request: Similar to the above, but no request body is

* present (e.g., a GET). W use the null-body directive instead.

* |n both this case and the previous one, we can tell fromthe

* Encapsul at ed header that the request headers were 412 bytes

* long. */

Encapsul at ed: reqg-hdr=0, null-body=412

/* REQMOD response: |CAP server returned a nodified request,
* with body */
Encapsul at ed: reqg-hdr=0, req-body=512

/* RESPMOD request: Request headers at 0, response headers at 822,
* response body at 1655. Note that no request body is allowed in
* RESPMOD requests. */

Encapsul at ed: reqg-hdr=0, res-hdr=822, res-body=1655

/* RESPMOD or REQVOD response: header and body returned */
Encapsul at ed: res-hdr=0, res-body=749

El son & Cerpa | nf or mat i onal [Page 17]

RFC 3507 | CAP April 2003

/* OPTI ONS response when there IS an options body */
Encapsul at ed: opt-body=0

/* OPTIONS response when there IS NOT an options body */
Encapsul at ed: nul | - body=0

4.4.2 Encapsul ated HTTP Headers

By default, | CAP nessages nmay encapsul ate HTTP nessage headers and
entity bodies. HITP headers MJST start with the request-Iline or
status-line for requests and responses, respectively, followed by
i nteresting HITP headers.

The encapsul ated headers MJST be term nated by a blank line, in order
to make them human readable, and in order to term nate line-by-1line
HTTP parsers.

HTTP/ 1.1 makes a distinction between end-to-end headers and hop- by-
hop headers (see Section 13.5.1 of [4]). End-to-end headers are
nmeani ngful to the ultimate recipient of a nessage, whereas hop-by-hop
headers are neani ngful only for a single transport-|ayer connection.
Hop- by- hop headers include Connection, Keep-Alive, and so forth. Al
end-to-end HITP headers SHOULD be encapsul ated, and all hop-by-hop
headers MJST NOT be encapsul at ed.

Despite the above restrictions on encapsul ati on, the hop-by-hop
Proxy- Aut henti cate and Proxy-Authorizati on headers MJST be forwarded
to the I CAP server in the | CAP header section (not the encapsul ated
nmessage). This allows propagation of client credentials that mght
have been sent to the ICAP client in cases where the ICAP client is
al so an HTTP surrogate. Note that this does not contradict HITP/ 1.1,
which explicitly states "A proxy MAY relay the credentials fromthe
client request to the next proxy if that is the nechani sm by which
the proxies cooperatively authenticate a given request.” (Section
14. 34) .

The Via header of an encapsul ated nessage SHOULD be nodi fied by an

| CAP server as if the encapsul ated nessage were traveling through an
HTTP surrogate. The Via header added by an | CAP server MJST specify
protocol as | CAP/1.0.

4.5 Message Preview
| CAP REQMOD or RESPMOD requests sent by the ICAP client to the | CAP

server may include a "preview'. This feature allows an | CAP server
to see the beginning of a transaction, then decide if it wants to

El son & Cerpa I nf or mat i onal [Page 18]

RFC 3507 | CAP April 2003

opt-out of the transaction early instead of receiving the reminder
of the request nessage. Previewing can yield significant performance
i nprovenents in a variety of situations, such as the follow ng:

- Virus-checkers can certify a large fraction of files as "cl ean"
just by looking at the file type, file name extension, and the
first few bytes of the file. Only the renaining files need to be
transmtted to the virus-checking | CAP server in their entirety.

- Content filters can use Preview to decide if an HTTP entity needs
to be inspected (the HTTP file type alone is not enough in cases
where "text" actually turns out to be graphics data). The magic
nunbers at the front of the file can identify a file as a JPEG or
G F.

- If an | CAP server wants to transcode all G F87 files into G F89
files, then the G F87 files could quickly be detected by | ooking
at the first few body bytes of the file.

- |If an I CAP server wants to force all cacheable files to expire in
24 hours or less, then this could be inplenented by selecting HITP
nessages with expiries nore than 24 hours in the future.

| CAP servers SHOULD use the OPTIONS nethod (see Section 4.10) to
speci fy how nmany bytes of preview are needed for a particular |CAP
application on a per-resource basis. Cients SHOUD be able to
provide Previews of at |east 4096 bytes. dients furthernore SHOULD
provide a Preview when using any | CAP resource that has indicated a
Preview is useful. (This indication mght be provided via the

OPTI ONS net hod, or some other "out-of-band" configuration.) Cients
SHOULD NOT provide a larger Preview than a server has indicated it is
willing to accept.

To effect a Preview, an | CAP client MJUST add a "Preview " header to
its request headers indicating the Iength of the preview. The |ICAP
client then sends:

- all of the encapsul ated header sections, and

- the beginning of the encapsul ated body section, if any, up to the
nunmber of bytes advertised in the Preview (possibly 0).

After the Previewis sent, the client stops and waits for an

i nternedi ate response fromthe | CAP server before continuing. This
mechanismis simlar to the "100-Continue" feature found in HTTP,
except that the stop-and-wait point can be within the nessage body.
In contrast, HITP requires that the point nust be the boundary

bet ween the headers and body.

El son & Cerpa I nf or mat i onal [Page 19]

RFC 3507 | CAP April 2003

For example, to effect a Preview consisting of only encapsul ated HTTP
headers, the I CAP client would add the foll owi ng header to the | CAP
request:

Preview. O

This indicates that the ICAP client will send only the encapsul ated
header sections to the |ICAP server, then it will send a zero-length
chunk and stop and wait for a "go ahead" to send nore encapsul at ed
body bytes to the | CAP server.

Simlarly, the | CAP header:
Previ ew. 4096

Indicates that the ICAP client will attenpt to send 4096 bytes of
origin server data in the encapsul ated body of the | CAP request to
the | CAP server. It is inportant to note that the actual transfer
may be | ess, because the ICAP client is acting |like a surrogate and
is not |ooking ahead to find the total length of the origin server
response. The entire | CAP encapsul ated header section(s) wll be
sent, followed by up to 4096 bytes of encapsul ated HTTP body. The
chunk body ternminator "O\r\n\r\n" is always included in these
transactions.

After sending the preview, the ICAP client will wait for a response
fromthe | CAP server. The response MJUST be one of the foll ow ng:

- 204 No Content. The |ICAP server does not want to (or can not)
nodify the ICAP client’s request. The ICAP client MJST treat this
the same as if it had sent the entire nessage to the | CAP server
and an identical nessage was returned.

- | CAP regmod or respnod response, dependi ng what nethod was the
original request. See Section 4.8.2 and 4.9.2 for the format of
regnod and respnod responses.

- 100 Continue. |If the entire encapsulated HTTP body did not fit
in the preview, the I CAP client MIUST send the remainder of its
| CAP nessage, starting fromthe first chunk after the preview |If
the entire nessage fit in the preview (detected by the "ECF"
synbol expl ai ned bel ow), then the | CAP server MJST NOT respond
with 100 Conti nue.

Wien an I CAP client is performing a preview, it may not yet know how
many bytes will ultimately be available in the arriving HITP nessage
that it is relaying to the HTTP server. Therefore, |CAP defines a
way for ICAP clients to indicate "EOF" to | CAP servers if one

El son & Cerpa I nf or mat i onal [Page 20]

RFC 3507 | CAP April 2003

unexpectedly arrives during the preview process. This is a
particularly useful optimzation if a header-only HITP response
arrives at the ICAP client (i.e., zero bytes of body); only a single
round trip will be needed for the conplete | CAP server response.

We define an HTTP chunk-extension of "ieof" to indicate that an | CAP
chunk is the last chunk (see [4]). The | CAP server MJST strip this
chunk extensi on before passing the chunk data to an | CAP application
process.

For example, consider an | CAP client that has just received HITP
response headers froman origin server and initiates an | CAP RESPMOD
transaction to an | CAP server. It does not know yet how many body
bytes will be arriving fromthe origin server because the server is
not using the Content-Length header. The ICAP client inforns the

| CAP server that it will be sending a 1024-byte preview using a
"Preview. 1024" request header. |If the HITP origin server then
closes its connection to the I CAP client before sending any data
(i.e., it provides a zero-byte body), the correspondi ng zero-byte
preview for that zero-byte origin response woul d appear as foll ows:

\r\n
0; ieof\r\n\r\n

If an | CAP server sees this preview, it knows fromthe presence of
"ieof" that the client will not be sending any nore chunk data. 1In
this case, the server MJST respond with the nodified response or a
204 No Content nessage right away. It MJST NOT send a 100- Conti nue
response in this case. (In contrast, if the origin response had been
1 byte or larger, the "ieof" would not have appeared. In that case,
an | CAP server MAY reply with 100-Continue, a nodified response, or
204 No Content.)

I n anot her exanple, if the previewis 1024 bytes and the origin
response is 1024 bytes in two chunks, then the encapsul ati on woul d
appear as follows:

200\r\n

<512 bytes of data>\r\n
200\r\n

<512 bytes of data>\r\n
0; ieof\r\n\r\n

<204 or nodified response> (100 Conti nue disall owed due to ieof)
If the previewis 1024 bytes and the origin response is 1025 bytes

(and the | CAP server responds with 100-continue), then these chunks
woul d appear on the wre:

El son & Cerpa | nf or mat i onal [Page 21]

RFC 3507 | CAP April 2003

200\r\n

<512 bytes of data>\r\n
200\r\n

<512 bytes of data>\r\n
O\r\n

<100 Continue Message>

I\r\n
<l byte of data>\r\n
O\r\n\r\n <no ieof because we are no | onger in preview node>

Once the | CAP server receives the eof indicator, it finishes reading
the current chunk stream

Note that when offering a Preview, the ICAP client is committing to
tenporarily buffer the previewed portion of the nmessage so that it
can honor a "204 No Content" response. The renainder of the nessage
is not necessarily buffered; it might be pipelined directly from
anot her source to the I CAP server after a 100-Conti nue.

4.6 "204 No Content" Responses outside of Previews

An | CAP client MAY choose to honor "204 No Content" responses for an
entire nessage. This is the decision of the client because it
i nposes a burden on the client of buffering the entire nessage.

An |1 CAP client MAY include "Allow. 204" in its request headers,
indicating that the server MAY reply to the nessage with a "204 No
Content" response if the object does not need nodification.

If an | CAP server receives a request that does not have "Allow 204",
it MUST NOT reply with a 204. In this case, an | CAP server MJST
return the entire nmessage back to the client, even though it is
identical to the nmessage it received.

The ONLY EXCEPTION to this rule is in the case of a nessage preview,
as described in the previous section. |If this is the case, an | CAP
server can respond with a 204 No Content nessage in response to a
nmessage preview EVEN if the original request did not have the "All ow
204" header.

4.7 | STag Response Header
The | STag ("1 CAP Service Tag") response-header field provides a way
for | CAP servers to send a service-specific "cookie" to ICAP clients

that represents a service's current state. It is a 32-byte-maxi mum
al phanuneric string of data (not including the null character) that

El son & Cerpa | nf or mat i onal [Page 22]

RFC 3507 | CAP April 2003

may, for exanple, be a representation of the software version or
configuration of a service. An |STag validates that previous | CAP
server responses can still be considered fresh by an | CAP client that
may be caching them [|If a change on the | CAP server invalidates
previ ous responses, the | CAP server can invalidate portions of the

| CAP client’s cache by changing its | STag. The |STag MJST be

i ncluded in every | CAP response froman | CAP server.

For exanpl e, consider a virus-scanning | CAP service. The |STag m ght
be a conbination of the virus scanner’s software version and the

rel ease nunber of its virus signature database. Wen the database is
updat ed, the |STag can be changed to invalidate all previous
responses that had been certified as "clean" and cached with the old
| STag.

| STag is simlar, but not identical, to the HTTP ETag. Wile an ETag
is a validator for a particular entity (object), an | STag vali dates
all entities generated by a particular service (URI). A change in
the | STag invalidates all the other entities provided a service with
the old I STag, not just the entity whose response contained the
updat ed | STag.

The syntax of an |ISTag is sinply:
| STag = "1 STag: " quoted-string

In this docunent we use the quoted-string definition defined in
section 2.2 of [4].

For exanmpl e:
| STag: "874900-1994-1c02798"

4.8 Request Modification Mde

In this method, described in Section 3.1, an I CAP client sends an
HTTP request to an | CAP server. The |CAP server returns a nodified
version of the request, an HTTP response, or (if the client indicates
it supports 204 responses) an indication that no nodification is
required.

4.8.1 Request
In REQVOD node, the | CAP request MJST contain an encapsul ated HITP

request. The headers and body (if any) MJST both be encapsul at ed,
except that hop-by-hop headers are not encapsul at ed.

El son & Cerpa I nf or mat i onal [Page 23]

RFC 3507 | CAP April 2003

4.8.2 Response

The response fromthe | CAP server back to the | CAP client may take
one of four forms:

- An error indication,

- A 204 indicating that the ICAP client’s request requires no
adaptation (see Section 4.6 for limtations of this response),

- An encapsul ated, adapted version of the I CAP client’s request, or

- An encapsul ated HTTP error response. Note that Request
Modi fi cation requests may only be satisfied with HITP responses in
cases when the HTTP response is an error (e.g., 403 Forbidden).

The first line of the response nmessage MJST be a status |line as
described in Section 4.3.3. If the return code is a 2XX, the | CAP
client SHOULD continue its normal execution of the request. If the
ICAP client is a surrogate, this may include serving an object from
its cache or forwarding the nodified request to an origin server
Note it is valid for a 2XX | CAP response to contain an encapsul at ed
HTTP error response, which in turn should be returned to the
downstreamclient by the I CAP client.

For other return codes that indicate an error, the I CAP client MAY
(for exanple) return the error to the downstreamclient or user,
execute the unadapted request as it arrived fromthe client, or re-
try the adaptation again.

The nodified request headers, if any, MJST be returned to the |ICAP
client using appropriate encapsul ati on as described in Section 4.4.

4.8.3 Exanples

Consider the follow ng exanple, in which a surrogate receives a
sinple GET request froma client. The surrogate, acting as an | CAP
client, then forwards this request to an | CAP server for

nodi fication. The |ICAP server nodifies the request headers and sends
them back to the I1CAP client. Qur hypothetical |CAP server wll
nodi fy several headers and strip the cookie fromthe original

request.

In all of our exanples, we include the extra neta-data added to the
nmessage due to chunking the encapsul ated nessage body (if any). W
assume that end-of-line terminations, and blank |ines, are two-byte
"CRLF" sequences.

El son & Cerpa | nf or mat i onal [Page 24]

RFC 3507 | CAP April 2003

| CAP Request Mbodification Exanple 1 - | CAP Request
REQMVOD i cap://icap-server. net/server?arg=87 |1 CAP/ 1.0
Host: icap-server. net

Encapsul at ed: reg-hdr=0, null-body=170

GET / HITP/ 1.1

Host: www. ori gi n-server.com
Accept: text/htm, text/plain
Accept - Encodi ng: conpress

Cooki e: ff39fk3jur @i i 0e02i

| f - None- Match: "xyzzy", "r2d2xxxx"

| CAP Request Modification Exanple 1 - | CAP Response
| CAP/ 1.0 200 K

Date: Mn, 10 Jan 2000 09:55:21 GV

Server: | CAP-Server-Software/ 1.0

Connection: cl ose

| STag: "WBE4AR7W9- L2E4- 2"

Encapsul at ed: reqg-hdr=0, null-body=231

GET /nodified-path HITP/ 1.1

Host: www. ori gi n-server.com

Via: 1.0 icap-server.net (|ICAP Exanple ReqMbd Service 1.1)
Accept: text/htm, text/plain, image/gif

Accept - Encodi ng: gzi p, conpress

| f - None- Match: "xyzzy", "r2d2xxxx"

The second exanple is sinilar to the first, except that the request
being nodified in this case is a POST instead of a GET. Note that

t he encapsul ated Content-Length argunment has been nodified to refl ect
the nodified body of the POST nessage. The outer | CAP nessage does
not need a Content-Length header because it uses chunking (not
shown) .

In this second exanpl e, the Encapsul at ed header shows the division
bet ween the forwarded header and forwarded body, for both the request
and the response.

| CAP Request Mbdification Exanple 2 - | CAP Request

REQMOD i cap://icap-server.net/server?arg=87 |1 CAP/ 1.0
Host: icap-server. net
Encapsul at ed: reqg-hdr=0, req-body=147

El son & Cerpa I nf or mat i onal [Page 25]

RFC 3507 | CAP April 2003

POST /origin-resource/formpl HITP/ 1.1
Host: www. ori gi n-server.com

Accept: text/htm, text/plain

Accept - Encodi ng: conpress

Pragma: no-cache

le
| am posting this information.

| CAP Request Modification Exanple 2 - | CAP Response
| CAP/ 1.0 200 K

Date: Mn, 10 Jan 2000 09:55:21 GV

Server: | CAP-Server-Software/ 1.0

Connection: cl ose

| STag: "WBE4AR7W9- L2E4- 2"

Encapsul at ed: reg- hdr=0, reqg-body=244

POST /origin-resource/formpl HITP/ 1.1

Host: www. ori gi n-server.com

Via: 1.0 icap-server.net (|ICAP Exanple ReqMbd Service 1.1)
Accept: text/htm, text/plain, image/gif

Accept - Encodi ng: gzi p, conpress

Pragma: no-cache

Cont ent - Lengt h: 45

2d
| am posting this information. | CAP powered!

Finally, this third exanple shows an | CAP server returning an error
response when it receives a Request Modification request.

| CAP Request Mbodification Exanple 3 - | CAP Request

REQMOD i cap://icap-server.net/content-filter 1CAP/ 1.0
Host: icap-server. net
Encapsul at ed: reqg-hdr=0, null-body=119

GET / naughty-content HTTP/ 1.1
Host: www. naughty-site.com
Accept: text/htm, text/plain
Accept - Encodi ng: conpress

El son & Cerpa I nf or mat i onal [Page 26]

RFC 3507 | CAP April 2003

| CAP Request Modification Exanple 3 - | CAP Response
| CAP/ 1.0 200 K

Date: Mn, 10 Jan 2000 09:55:21 GV

Server: | CAP-Server-Software/ 1.0

Connection: cl ose

| STag: "WBE4AR7W9- L2E4- 2"

Encapsul ated: res-hdr=0, res-body=213

HTTP/ 1.1 403 For bi dden

Date: Wed, 08 Nov 2000 16:02:10 GV

Server: Apache/1.3.12 (Unix)

Last-Modi fied: Thu, 02 Nov 2000 13:51:37 GMI
ETag: "63600-1989-3a017169"

Cont ent - Lengt h: 58

Cont ent - Type: text/htn

3a
Sorry, you are not allowed to access that naughty content.

4.9 Response Modification Mde

In this method, described in Section 3.2, an I CAP client sends an
origin server’s HITP response to an | CAP server, and (if avail able)
the original client request that caused that response. Sinilar to
Request Mbdification nethod, the response fromthe | CAP server can be
an adapted HITP response, an error, or a 204 response code indicating
that no adaptation is required.

4.9.1 Request

Usi ng encapsul ati on described in Section 4.4, the header and body of
the HTTP response to be nodified MIUST be included in the | CAP body.

| f available, the header of the original client request SHOULD al so
be included. As with the other nethod, the hop-by-hop headers of the
encapsul at ed nmessages MUST NOT be forwarded. The Encapsul at ed header
MUST i ndicate the byte-offsets of the beginning of each of these four
parts.

4.9.2 Response

The response fromthe | CAP server |ooks just like a reply in the
Request Mbdification nethod (Section 4.8); that is,

- An error indication,

El son & Cerpa | nf or mat i onal [Page 27]

RFC 3507 | CAP April 2003

- An encapsul ated and potentially nodified HTTP response header and
response body, or

- An HTTP response 204 indicating that the I CAP client’s request
requi res no adaptati on.

The first line of the response nmessage MJST be a status |line as
described in Section 4.3.3. If the return code is a 2XX, the | CAP
client SHOULD continue its normal execution of the response. The

| CAP client MAY re-exanine the headers in the response’s nessage
headers in order to nake further decisions about the response (e.g.,
its cachability).

For other return codes that indicate an error, the | CAP client SHOULD
NOT return these directly to downstreamclient, since these errors
only make sense in the I CAP client/server transaction

The nodified response headers, if any, MJST be returned to the | CAP
client using appropriate encapsul ation as described in Section 4.4.

4.9.3 Exanpl es

In Exanple 4, an ICAP client is requesting nodification of an entity
that was returned as a result of a client GET. The original client
GET was to an origin server at "ww.origin-server.conl; the |ICAP
server is at "icap.exanple.org".

| CAP Response Modification Exanple 4 - | CAP Request
RESPMOD i cap://icap. exanpl e.org/satisf 1CAP/1.0
Host: icap. exanple.org

Encapsul ated: reg- hdr=0, res-hdr=137, res-body=296

GET /origin-resource HITP/ 1.1

Host: www. ori gi n-server.com

Accept: text/htm, text/plain, image/gif
Accept - Encodi ng: gzi p, conpress

HTTP/ 1.1 200 XK

Date: Mn, 10 Jan 2000 09:52:22 GV
Server: Apache/1.3.6 (Unix)

ETag: "63840-1ab7-378d415b"
Cont ent - Type: text/htn

Cont ent - Lengt h: 51

El son & Cerpa I nf or mat i onal [Page 28]

RFC 3507 | CAP April 2003

33
This is data that was returned by an origin server

| CAP Response Modification Exanple 4 - | CAP Response
| CAP/ 1.0 200 K

Date: Mn, 10 Jan 2000 09:55:21 GV

Server: | CAP-Server-Software/ 1.0

Connection: cl ose

| STag: "WBE4AR7W9- L2E4- 2"

Encapsul ated: res-hdr=0, res-body=222

HTTP/ 1.1 200 K

Date: Mn, 10 Jan 2000 09:55:21 GV

Via: 1.0 icap.exanple.org (I CAP Exanpl e RespMd Service 1.1)
Server: Apache/1.3.6 (Unix)

ETag: "63840- 1lab7-378d415b"

Cont ent - Type: text/htn

Cont ent - Lengt h: 92

5c
This is data that was returned by an origin server, but wth
val ue added by an | CAP server.

4.10 OPTIONS Met hod

The | CAP "OPTIONS" nethod is used by the ICAP client to retrieve
configuration information fromthe | CAP server. In this nethod, the
| CAP client sends a request addressed to a specific |ICAP resource and
receives back a response with options that are specific to the
service naned by the URI. Al OPTIONS requests MAY al so return
options that are global to the server (i.e., apply to all services).

4.10.1 OPTI ONS Request

The OPTI ONS net hod consists of a request-line, as described in
Section 4.3.2, such as the foll ow ng exanpl e:

OPTIONS i cap://icap.server.net/sanpl e-service | CAP/ 1.0 User-Agent:
| CAP-cl i ent - XYZ/ 1. 001

El son & Cerpa I nf or mat i onal [Page 29]

RFC 3507 | CAP April 2003

O her headers are also allowed as described in Section 4.3.1 and
Section 4.3.2 (for exanple, Host).

4.10.2 OPTI ONS Response

The OPTI ONS response consists of a status line as described in
section 4.3.3 followed by a series of header field nanes-value pairs
optionally followed by an opt-body. Miltiple values in the val ue
field MIUST be separated by commas. |f an opt-body is present in the
OPTI ONS response, the Opt-body-type header describes the format of

t he opt-body.

The OPTI ONS headers supported in this version of the protocol are:

-- Met hods:
The method that is supported by this service. This header MJST be
i ncluded in the OPTIONS response. The OPTIONS net hod MJUST NOT be
in the Methods’ list since it MJST be supported by all the | CAP
server inmplenmentations. Each service should have a distinct UR
and support only one nethod in addition to OPTIONS (see Section
6.4).

For exanpl e:
Met hods: RESPMOD

-- Service:

A text description of the vendor and product nane. This header
MAY be included in the OPTIONS response.

For exanpl e:
Service: XYZ Technol ogy Server 1.0

-- | STag:

See section 4.7 for details. This header MJST be included in the
OPTI ONS r esponse.

For exanpl e:
| STag: "5BDEEEA9- 12E4- 2"

-- Encapsul at ed:

Thi s header MJST be included in the OPTIONS response; see Section
4.4,

El son & Cerpa I nf or mat i onal [Page 30]

RFC 3507 | CAP April 2003

El son

For exanpl e:
Encapsul at ed: opt - body=0

Opt - body-t ype:

A token identifying the format of the opt-body. (Valid opt-body
types are not defined by I CAP.) This header MJST be included in
the OPTIONS response ONLY if an opt-body type is present.

For exanpl e:
Opt - body-type: XM.-Policy-Table-1.0

Max- Connecti ons:

The maxi mum nunber of | CAP connections the server is able to
support. This header MAY be included in the OPTIONS response.

For exanpl e:
Max- Connecti ons: 1500

Options- TTL:

The time (in seconds) for which this OPTIONS response is valid.

If none is specified, the OPTI ONS response does not expire. This
header MAY be included in the OPTIONS response. The |CAP client
MAY rei ssue an OPTI ONS request once the Options-TTL expires.

For exanpl e:
Options-TTL: 3600

Dat e:

The server’s clock, specified as an RFC 1123 conpliant date/tine
string. This header MAY be included in the OPTIONS response.

For exanpl e:
Date: Fri, 15 Jun 2001 04:33:55 GVIr

Servi ce-1 D

A short label identifying the | CAP service. 1t MAY be used in
attri bute header nanes. This header MAY be included in the
OPTI ONS r esponse.

For exanpl e:
Service-1D: xyztech

& Cerpa | nf or mat i onal [Page 31]

RFC 3507 | CAP April 2003

-- Al ow

A directive declaring a list of optional |ICAP features that this
server has inplenented. This header MAY be included in the

OPTI ONS response. In this docunent we define the value "204" to
i ndicate that the | CAP server supports a 204 response.

For exanpl e:
Al ow 204

-- Preview

The nunber of bytes to be sent by the ICAP client during a
preview. This header MAY be included in the OPTIONS response.

For exanpl e:
Preview. 1024

-- Transfer-Previ ew

Alist of file extensions that should be previewed to the | CAP
server before sending themin their entirety. This header MAY be
included in the OPTIONS response. Miltiple file extensions val ues
shoul d be separated by commas. The wildcard value "*" specifies
the default behavior for all the file extensions not specified in
any ot her Transfer-* header (see bel ow).

For exanpl e:
Transfer-Preview *

-- Transfer-Ignore:
Alist of file extensions that should NOT be sent to the | CAP
server. This header MAY be included in the OPTIONS response.
Multiple file extensions should be separated by comas.

For exanpl e:
Transfer-lgnore: htm

-- Transfer-Conpl ete:
Alist of file extensions that should be sent in their entirety
(without preview) to the | CAP server. This header MAY be incl uded
in the OPTIONS response. Miltiple file extensions val ues shoul d
be separated by comas.

For exanpl e:
Transfer- Conpl ete: asp, bat, exe, com ole

El son & Cerpa I nf or mat i onal [Page 32]

RFC 3507 | CAP April 2003

Note: If any of Transfer-* are sent, exactly one of them MJUST contain
the wildcard value "*" to specify the default. |If no Transfer-* are
sent, all responses will be sent in their entirety (w thout Preview).

4.10. 3 OPTI ONS Exanpl es

In exanple 5, an I CAP Cient sends an OPTI ONS Request to an | CAP
Servi ce naned icap. server.net/sanpl e-service in order to get
configuration information for the service provided.

| CAP OPTI ONS Exanple 5 - | CAP OPTI ONS Request

OPTIONS i cap://icap.server.net/sanpl e-service | CAP/ 1.0
Host: icap. server. net

User - Agent : BazookaDot Com | CAP-Client-Library/2.3

| CAP OPTI ONS Exanple 5 - | CAP OPTI ONS Response
| CAP/ 1.0 200 K

Date: Mn, 10 Jan 2000 09:55:21 GV
Met hods: RESPMOD

Service: FOO Tech Server 1.0

| STag: "WBE4AR7W9- L2E4- 2"

Encapsul at ed: nul | - body=0

Max- Connecti ons: 1000

Options-TTL: 7200

Al l ow. 204

Previ ew. 2048

Transf er- Conpl ete: asp, bat, exe, com
Transfer-lgnore: htm

Transfer-Preview *

5. Caching

| CAP servers’ responses MAY be cached by ICAP clients, just as any
ot her surrogate night cache HTTP responses. Similar to HTTP, | CAP
clients MAY al ways store a successful response (see sections 4.8.2
and 4.9.2) as a cache entry, and MAY return it without validation if
it is fresh. |ICAP servers use the caching directives described in
HTTP/ 1.1 [4].

In Request Modification node, the | CAP server MAY include caching

directives in the | CAP header section of the I CAP response (NOT in
the encapsul ated HTTP request of the | CAP nessage body). In Response

El son & Cerpa I nf or mat i onal [Page 33]

RFC 3507 | CAP April 2003

6.

Modi fication node, the | CAP server MAY add or nodify the HTTP caching
directives located in the encapsul ated HITP response (NOT in the | CAP
header section). Consequently, the I CAP client SHOULD | ook for
caching directives in the | CAP headers in case of REQMOD, and in the
encapsul ated HTTP response in case of RESPMOD.

In cases where an | CAP server returns a nodified version of an object
created by an origin server, such as in Response Modification node,
the expiration of the | CAP-nodified object MIST NOT be | onger than
that of the origin object. |In other words, |CAP servers MJST NOT
extend the lifetime of origin server objects, but MAY shorten it.

In cases where the | CAP server is the authoritative source of an | CAP
response, such as in Request Mbdification node, the | CAP server is
not restricted in its expiration policy.

Note that the | STag response-header nmay al so be used to providing
caching hints to clients; see Section 4.7.

I npl erent ati on Not es

6.1 Vectoring Points

The definition of the I CAP protocol itself only describes two

di fferent adaptation channels: nodification (and satisfaction) of
requests, and nodifications of replies. However, an | CAP client

i npl enentation is likely to actually distinguish anong four different
cl asses of adaptati on:

1. Adaptation of client requests. This is adaptation done every
time a request arrives froma client. This is adaptation done
when a request is "on its way into the cache". Factors such as
the state of the objects currently cached will deterni ne whether
or not this request actually gets forwarded to an origin server
(instead of, say, getting served off the cache's disk). An
exanpl e of this type of adaptation would be special access
control or authentication services that nust be perforned on a
per-client basis.

2. Adaptation of requests on their way to an origin server.
Al though this type of adaptation is also an adaptation of
requests simlar to (1), it describes requests that are "on their
way out of the cache"; i.e., if a request actually requires that
an origin server be contacted. These adaptation requests are not
necessarily specific to particular clients. An exanple would be
addition of "Accept:" headers for special devices; these
adaptations can potentially apply to many clients.

El son & Cerpa I nf or mat i onal [Page 34]

RFC 3507 | CAP April 2003

3. Adaptations of responses coning froman origin server. This is
the adaptation of an object "on its way into the cache". In
other words, this is adaptation that a surrogate might want to
performon an object before caching it. The adapted object may
subsequently served to many clients. An exanple of this type of
adaptation is virus checking: a surrogate will want to check an
inconing origin reply for viruses once, before allowing it into
the cache -- not every time the cached object is served to a
client.

Adapt ati on of responses coning fromthe surrogate, headi ng back
to the client. Although this type of adaptation, like (3), is
the adaptation of a response, it is client-specific. dient
reply adaptation is adaptation that is required every tinme an
object is served to a client, even if all the replies conme from
the same cached object off of disk. Ad insertion is a comobn
formof this kind of adaptation; e.g., if a popul ar (cached)

obj ect that rarely changes needs a different ad inserted into it
every time it is served off disk to a client. Note that the

rel ati onshi p between adaptations of type (3) and (4) is anal ogous
to the rel ati onship between types (2) and (1).

Al t hough the distinction anbng these four adaptation points is
critical for ICAP client inplenmentations, the distinction is not
significant for the I CAP protocol itself. Fromthe point of view of
an | CAP server, a request is a request -- the | CAP server doesn’t
care what policy led the ICAP client to generate the request. W
therefore did not make these four channels explicit in | CAP for

sinplicity.
6.2 Application Level Errors

Section 4 described "on the wire" protocol errors that MJST be
standar di zed across inplenentations to ensure interoperability. In
this section, we describe errors that are comunicated between | CAP
software and the clients and servers on which they are inplenented.
Al t hough such errors are inplenentation dependent and do not
necessarily need to be standardi zed because they are "within the
box", they are presented here as advice to future inplementors based
on past inplenmentation experience.

El son & Cerpa I nf or mat i onal [Page 35]

RFC 3507 | CAP April 2003

Error nane Val ue
| CAP_CANT_CONNECT 1000
| CAP_SERVER_RESPONSE_CLOSE 1001
| CAP_SERVER_RESPONSE_RESET 1002
| CAP_SERVER_UNKNOWN_CCDE 1003
| CAP_SERVER_UNEXPECTED CLOSE_204 1004
| CAP_SERVER_UNEXPECTED_CLOSE 1005

1000 | CAP_CANT_CONNECT:
"Cannot connect to | CAP server".

The | CAP server is not connected on the socket. Maybe the | CAP
server is dead or it is not connected on the socket.

1001 | CAP_SERVER RESPONSE_CLOSE:
"I CAP Server closed connection while reading response”

The | CAP server TCP-shutdowns the connection before the | CAP
client can send all the body data.

1002 | CAP_SERVER RESPONSE_RESET:
"I CAP Server reset connection while reading response".

The | CAP server TCP-reset the connection before the | CAP client
can send all the body data.

1003 | CAP_SERVER UNKNOWN_CODE:
"I CAP Server sent unknown response code"

An unknown | CAP response code (see Section 4.x) was received by
the | CAP client.

1004 | CAP_SERVER UNEXPECTED_ CLOSE_204:
"] CAP Server closed connection on 204 without 'Connection: close’
header".

An | CAP server MJST send the "Connection: close" header if
intends to close after the current transaction.

1005 | CAP_SERVER UNEXPECTED_ CLOSE:

"I CAP Server closed connection as | CAP client wote body
preview'.

El son & Cerpa I nf or mat i onal [Page 36]

RFC 3507 | CAP April 2003

6.3 Use of Chunked Transfer-Encoding

For sinplicity, |CAP nessages MJST use the "chunked" transfer-
encodi ng within the encapsul ated body section as defined in HTTP/ 1.1
[4]. This requires that I CAP client inplenmentations convert incom ng
objects "on the fly" to chunked from what ever transfer-encodi ng on
which they arrive. However, the transformation is sinple:

- For objects arriving using "Content-Length" headers, one big chunk
can be created of the sane size as indicated in the Content-Length
header .

- For objects arriving using a TCP close to signal the end of the
obj ect, each incoming group of bytes read fromthe OS can be
converted into a chunk (by witing the length of the bytes read,
foll owed by the bytes thensel ves)

- For objects arriving using chunked encodi ng, they can be
retransmitted as is (w thout re-chunking).

6.4 Distinct URIs for Distinct Services

7.

| CAP servers SHOULD assign unique URIs to each service they provide,
even if such services mght theoretically be differentiated based on
their method. In other words, a REQMOD and RESPMOD service shoul d
never have the sanme URI, even if they do sonmething that is
conceptual ly the sane.

This situation in ICAP is sinilar to that found in HTTP where it
mght, in theory, be possible to performa CET or a POST to the sane
URI and expect two different results. This kind of overl oadi ng of
URI's only causes confusion and shoul d be avoi ded.

Security Considerations

7.1 Authentication

Aut hentication in ICAP is very simlar to proxy authentication in
HTTP as specified in RFC 2617. Specifically, the follow ng rules

appl y:

- WAWM Aut henti cate chal |l enges and responses are for end-to-end
aut hentication between a client (user) and an origin server. As
any proxy, ICAP clients and | CAP servers MJST forward these
headers wi thout nodification

El son & Cerpa I nf or mat i onal [Page 37]

RFC 3507 | CAP April 2003

- If authentication is required between an I CAP client and | CAP
server, hop-by-hop Proxy Authentication as described in RFC 2617
MJUST be used.

There are potential applications where a user (as opposed to | CAP
client) mght have rights to access an | CAP service. In this version
of the protocol, we assune that | CAP clients and | CAP servers are
under the same adm nistrative domain, and contained in a single trust
domain. Therefore, in these cases, we assune that it is sufficient
for users to authenticate thenselves to the ICAP client (which is a
surrogate fromthe point of viewfromthe user). This type of
authentication will also be Proxy Authentication as described in RFC
2617.

This standard explicitly excludes any nmethod for a user to
authenticate directly to an | CAP server; the I CAP client MJST be
i nvol ved as descri bed above.

7.2 Encryption

Users of |1 CAP should note well that | CAP nessages are not encrypted
for transit by default. |In the absence of sone other form of
encryption at the link or network | ayers, eavesdroppers may be able
to record the unencrypted transacti ons between | CAP clients and
servers. As described in Section 4.3.1, the Upgrade header MAY be
used to negotiate transport-layer security for an | CAP connecti on

[5].

Note al so that end-to-end encryption between a client and origin
server is likely to preclude the use of val ue-added services by

i nternmedi ari es such as surrogates. An |CAP server that is unable to
decrypt a client’s nmessages will, of course, be unable to perform any
transformations on it.

7.3 Service Validation

Normal HTTP surrogates, when operating correctly, should not affect
the end-to-end semantics of nessages that pass through them This
formse a well-defined criterion to validate that a surrogate is

wor ki ng correctly: a nessage should | ook the sane before the
surrogate as it does after the surrogate.

In contrast, ICAP is nmeant to cause changes in the semantics of
nmessages on their way fromorigin servers to users. The criteria for
a correctly operating surrogate are no |onger as easy to define.

This will make validation of | CAP services significantly nore
difficult. Incorrect adaptations may |l ead to security

vul nerabilities that were not present in the unadapted content.

El son & Cerpa I nf or mat i onal [Page 38]

RFC 3507 | CAP April 2003

8. Modtivations and Design Alternatives

This section describes sonme of our design decisions in nore detail,
and describes the ideas and notivations behind them This section
does not define protocol requirenments, but hopefully sheds |ight on
the requirenents defined in previous sections. Nothing in this
section carries the "force of law' or is part of the formal protoco
speci ficati on.

In general, our guiding principle was to make | CAP t he sinpl est
possi bl e protocol that would do the job, and no sinpler. Some
features were rejected where alternative (non-protocol -based)
solutions could be found. |In addition, we have intentionally left a
nunber of issues at the discretion of the inplenmentor, where we
bel i eve that doing so does not conprom se interoperability.

8.1 To Be HTTP, or Not To Be

| CAP was initially designed as an application-layer protocol built to
run on top of HITP. This was desirable for a nunber of reasons.

HTTP is well-understood in the cormmunity and has enjoyed significant

i nvestnents in software infrastructure (clients, servers, parsers,
etc.). Qur initial designs focused on | everagi ng that existing work;
we hoped that it would be possible to inplenent | CAP services sinply,
using CA scripts run by existing web servers.

However, the devil (as always) proved to be in the details. Certain
features that we considered inportant were inpossible to inplenent
with HTTP. For exanple, I CAP clients can stop and wait for a "100
Conti nue" nessage in the nidst of a nessage-body; HITP clients may
only wait between the header and body. 1In addition, certain
transformati ons of HTTP nessages by surrogates are |egal (and

harm ess for HTTP), but caused problenms with | CAP s "header-in-
header" encapsul ati on and ot her features.

Utimtely, we decided that the tangle of workarounds required to fit
| CAP into HTTP was nore conpl ex and confusing than novi ng away from
HTTP and defining a new (but simlar) protocol.

8.2 Mandatory Use of Chunking

Chunking is mandatory in | CAP encapsul ated bodies for three reasons.
First, efficiency is inportant, and the chunked encoding allows both
the client and server to keep the transport-|ayer connection open for
| ater reuse. Second, |CAP servers (and their devel opers) should be
encouraged to produce "increnental" responses where possible, to
reduce the |l atency perceived by users. Chunked encoding is the only
way to support this type of inplenmentation. Finally, by

El son & Cerpa I nf or mat i onal [Page 39]

RFC 3507 | CAP April 2003

standardi zi ng on a single encapsul ati on mechani sm we avoid the
conplexity that would be required in client and server software to
support nultiple mechanisns. This sinmplifies |CAP, particularly in
the "body preview' feature described in Section 4.5.

Wi | e chunki ng of encapsul ated bodi es i s nandatory, encapsul ated
headers are not chunked. There are two reasons for this decision.
First, in cases where a chunked HTTP nessage body is being

encapsul ated in an | CAP nessage, the I CAP client (HTTP server) can
copy it directly fromthe HTTP client to the | CAP server wi thout un-
chunking and then re-chunking it. Second, many header - parser

i npl ementations have difficulty dealing with headers that come in
multiple chunks. Earlier drafts of this document mandated that a
chunk boundary not conme within a header. For clarity, chunking of
encapsul at ed headers has sinply been disal |l owed.

8.3 Use of the null-body directive in the Encapsul at ed header

There is a di sadvantage to not using the chunked transfer-encodi ng
for encapsul ated header part of an | CAP nmessage. Specifically,
parsers do not know in advance how much header data is comng (e.g.,
for buffer allocation). |CAP does not allow chunking in the header
part for reasons described in Section 8.2. To conpensate, the
"nul | -body" directive allows the final header’s length to be

determ ned, despite it not being chunked.

9. References
[1] Berners-Lee, T., Fielding, R and L. Masinter, "Uniform Resource
Identifiers (URI): Generic Syntax and Semantics", RFC 2396
August 1998.

[2] Bradner, S., "Key words for use in RFCs to |Indicate Requirenent
Level s", BCP 14, RFC 2119, WMarch 1997.

[3] Resnick, P., "Internet Message Format", RFC 2822, April 2001

[4] Fielding, R, Gettys, J., Mgul, J., Frystyk, H, Msinter, L.
Leach, P. and T. Berners-Lee, "Hypertext Transfer Protocol --
HTTP/ 1. 1", RFC 2616, June 1999.

[5] Khare, R and S. Lawence, "Upgrading to TLS Wthin HTTP/ 1. 1",
RFC 2817, May 2000.

El son & Cerpa I nf or mat i onal [Page 40]

RFC 3507

10.

El son & Cerpa

Contri butors

| CAP i s based on an original idea by John Martin and Peter
Many i ndi vi dual s and organi zati ons have contributed to the

April 2003

Danzi g.

devel opnent of | CAP, including the follow ng contributors (past and

present):

Lee Duggs

Net wor k Appliance, Inc.
495 East Java Dr.
Sunnyval e, CA 94089 USA

Phone: (408) 822-6000
EMai | : | ee. duggs@et app. com

Paul East ham

Net wor k Appliance, Inc.
495 East Java Dr.
Sunnyval e, CA 94089 USA

Phone: (408) 822-6000
EMai | : east ham@et app. com

Debbi e Fut cher

Net wor k Appliance, Inc.
495 East Java Dr.
Sunnyval e, CA 94089 USA

Phone: (408) 822-6000
EMai | : debor ah. f ut cher @et app. com

Don Gllies

Net wor k Appliance, Inc.
495 East Java Dr.
Sunnyval e, CA 94089 USA

Phone: (408) 822-6000
EMail: gillies@etapp.com

Steven La

Net wor k Appliance, Inc.
495 East Java Dr.
Sunnyval e, CA 94089 USA

Phone: (408) 822-6000
EMai | : steven.| a@et app. com

| nf or mat i onal

[Page 41]

RFC 3507 | CAP April 2003

John Martin

Net wor k Appliance, Inc.
495 East Java Dr.
Sunnyval e, CA 94089 USA

Phone: (408) 822-6000
EMai | : jmarti n@et app. com

Jeff Merrick

Net wor k Appliance, Inc.
495 East Java Dr.
Sunnyval e, CA 94089 USA

Phone: (408) 822-6000
EMail: jeffrey.merrick@etapp.com

John Schust er

Net wor k Appliance, Inc.
495 East Java Dr.
Sunnyval e, CA 94089 USA

Phone: (408) 822-6000
EMai | : j ohn. schust er @et app. com

Edward Sharp

Net wor k Appliance, Inc.
495 East Java Dr.
Sunnyval e, CA 94089 USA

Phone: (408) 822-6000
EMai | : edwar d. shar p@et app. com

Peter Danzig

Akanmai Technol ogi es

1400 Fashion |sland Bl vd
San Mateo, CA 94404 USA

Phone: (650) 372-5757
EMai | : danzi g@kanai . com

Mar k Not t i ngham

Akanmai Technol ogi es

1400 Fashion |sland Bl vd
San Mateo, CA 94404 USA

Phone: (650) 372-5757
EMai | : mmot @kamai . com

El son & Cerpa | nf or mat i onal [Page 42]

RFC 3507 | CAP April 2003

Nitin Sharma

Akanmai Technol ogi es

1400 Fashi on |sland Bl vd
San Mateo, CA 94404 USA

Phone: (650) 372-5757
EMai | : nitin@kanai.com

Hlarie O nman

Novel |, Inc.

122 East 1700 South
Provo, UT 84606 USA

Phone: (801) 861-7021

EMai | : hor nan@ovel | . com
Craig Blitz
Novel |, Inc.

122 East 1700 South
Provo, UT 84606 USA

Phone: (801) 861-7021
EMail: cblitz@ovell.com

Gary Tom i nson

Novel |, Inc.

122 East 1700 South
Provo, UT 84606 USA

Phone: (801) 861-7021
EMai | : garyt @ovel | .com

Andr e Beck

Bel | Laboratories / Lucent Technol ogi es
101 Crawfords Corner Road

Hol ndel , New Jersey 07733-3030

Phone: (732) 332-5983
EMai | : abeck@el | -1 abs. com

Mar kus Hof mann

Bel | Laboratories / Lucent Technol ogi es
101 Crawfords Corner Road

Hol ndel , New Jersey 07733-3030

Phone: (732) 332-5983
EMai | : hof mann@el | -1 abs. com

El son & Cerpa I nf or mat i onal [Page 43]

RFC 3507 | CAP April 2003

Davi d Bryant

CacheFl ow, Inc.

650 Al manor Avenue

Sunnyval e, California 94086

Phone: (888) 462-3568
EMai | : davi d. bryant @achef| ow. com

El son & Cerpa | nf or mat i onal [Page 44]

RFC 3507

Appendi x A BNF

Thi s grammar i
(BNF) simlar
2.1 of [4]).

in order to un

Many header va
semanti cs as i

| CAP- Ver si on

| CAP- Message

Request

Request - Li ne
Met hod =
I
I
I
Ext ensi on- Met h
| CAP_URI = Sch
Schene =

Net _Pat h =

Aut hority =

Request - Header

Request - Fi el ds

; Header field
Request - Fi el d-

El son & Cerpa

| CAP April 2003

G ammar for | CAP Messages

s specified in terns of the augnented Backus-Naur Form
to that used by the HITP/ 1.1 specification (See Section
I npl ementors will need to be famliar with the notation
derstand this specification.

| ues (where noted) have exactly the sane grammar and
n HITP/1.1. W do not reproduce those granmars here.

"I CAP/ 1. 0"

Request | Response
Request - Li ne

*(Request - Header CRLF)
CRLF

[Request-Body]

Met hod SP | CAP_URI SP | CAP- Versi on CRLF

" REQVOD' ; Section 4.8
" RESPMOD! ; Section 4.9
" OPTI ONS" ; Section 4.10
Ext ensi on- Method ; Section 4.3.2
od = token
ene ":" Net_Path ["?" Query] ; Section 4.2
"icap"
"“/1" Authority [Abs_Path]
[userinfo "@] host [":" port]
= Request-Fields ":" [Generic-Field-Value]
= Request - Fi el d- Nane
| Common- Fi el d- Nane
s specific to requests
Nane = "Aut hori zation" ; Section 4.3.2
| "Al ow : Section 4.3.2
| "Front : Section 4.3.2
| "Host™" ; Section 4.3.2
| "Referer" : Section 4.3.2
I nf or mat i onal [Page 45]

RFC 3507

| CAP

"User - Agent "
"Previ ew

April 2003

Section 4.3.2
Section 4.5

; Header fields common to both requests and responses

Conmon- Fi el d- Name =
I
I
I
I
I
I
I
I

Ext ensi on- Fi el d- Nane

CGeneri c- Fi el d- Val ue
CGeneri c- Fi el d- Cont ent

Request - Body = *OCTET

Response

"Cache- Control "

"Connecti on"
" Dat e"
"Expires"
"Pragma"

"Trailer"
"Upgr ade"
"Encapsul at ed"

Ext ensi on- Fi el d- Name

n X_ n

t oken

Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti

on
on
on
on
on
on
on
on

*(Generic-Fi el d- Cont ent

<t he OCTETs making up the field-val ue
and consisting of either *TEXT or
conbi nati ons of token,
and quot ed-string>

Sec i

4.

w

RPRRRRRR

4.3
4.3
4.3
4, 3.
4.3
4.3
4.4
tio

n 4.3

| LWE)

separators,

; See Sections 4.4 and 4.5 for senmntics

St at us- Li ne

*(Response- Header CRLF)

CRLF

[Response- Body]

St at us- Li ne
St at us- Code = "100"
"101"
" 200"
" 201"
" 202"
" 203"
" 204"
" 205"
" 206"
" 300"
"301"
" 302"
"303"
" 304"
" 305"
" 306"
"307"

El son & Cerpa

Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

4.5
10.
10.
10.
10.
10.
4.6
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.

NN =
RWNRN

WWWWwwwwnN

O~NOUA_AWNE~NO

of
of
of
of
of

of
of
of
of
of
of
of
of
of
of

| nf or mat i onal

[4]
[4]
[4]
[4]
[4]

[4]
[4]
[4]
[4]
[4]
[4]
[4]
[4]
[4]
[4]

| CAP- Ver si on SP St at us- Code SP Reason- Phrase CRLF

[Page 46]

RFC 3507 | CAP April 2003

| "400" ; Section 4.3.3

| "401" ; Section 10.4.2 of [4]
| "402" ; Section 10.4.3 of [4]
| "403" ; Section 10.4.4 of [4]
| "404" ; Section 4.3.3

| "405" ; Section 4.3.3

| "406" ; Section 10.4.7 of [4]
| "407" ; Section 10.4.8 of [4]
| "408" ; Section 4.3.3

| "409" ; Section 10.4.10 of [4]
| "410" ; Section 10.4.11 of [4]
| "411" ; Section 10.4.12 of [4]
| "412" ; Section 10.4.13 of [4]
| "413" ; Section 10.4.14 of [4]
| "414" ; Section 10.4.15 of [4]
| "415" ; Section 10.4.16 of [4]
| "416" ; Section 10.4.17 of [4]
| "417" ; Section 10.4.18 of [4]
| "500" ; Section 4.3.3

| "501" ; Section 4.3.3

| "502" ; Section 4.3.3

| "503" ; Section 4.3.3

| "504" ; Section 10.5.5 of [4]
| "505" ; Section 4.3.3

| Extension- Code

Extension-Code = 3DIA T
Reason- Phrase = *<TEXT, excluding CR LF>
Response- Header = Response-Fields ":" [Generic-Field-Value]

Response- Fi el d- Nane
| Conmon- Fi el d- Nane

Response- Fi el ds

"Server" : Section 4.3.3
| "ISTag" ; Section 4.7

Response- Fi el d- Nane

Response-Body = *OCTET ; See Sections 4.4 and 4.5 for semantics

El son & Cerpa | nf or mat i onal [Page 47]

RFC 3507 | CAP April 2003

Aut hor s’ Addresses

Jereny El son

University of California Los Angel es
Departnent of Conputer Science

3440 Boel ter Hal

Los Angel es CA 90095

Phone: (310) 206-3925
EMai | : jel son@s. ucl a. edu

Al berto Cerpa

University of California Los Angel es
Departnent of Conputer Science

3440 Boelter Hal

Los Angel es CA 90095

Phone: (310) 206-3925
EMai | : cerpa@s. ucl a. edu

| CAP di scussion currently takes place at
i cap-di scussi ons@ahoogr oups. com

For nore information, see
http://groups. yahoo. com group/i cap-di scussi ons/.

El son & Cerpa I nf or mat i onal [Page 48]

RFC 3507 | CAP April 2003

Ful I Copyright Statenent
Copyright (C) The Internet Society (2003). Al Rights Reserved.

Thi s docunent and translations of it nmay be copied and furnished to
ot hers, and derivative works that comment on or otherw se explain it
or assist inits inplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng I nternet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into |Ianguages other than
Engli sh.

The limted perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE | NFORMATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE.

Acknow edgenent

Fundi ng for the RFC Editor function is currently provided by the
I nternet Society.

El son & Cerpa I nf or mat i onal [Page 49]

