Each netCDF variable has an external type, specified when the variable is first defined.
This external type determines whether the data is intended for text or numeric values, and if numeric, the range and precision of numeric values.
If the netCDF external type for a variable is char, only character data representing text strings can be written to or read from the variable. No automatic conversion of text data to a different representation is supported.
If the type is numeric, however, the netCDF library allows you to access the variable data as a different type and provides automatic conversion between the numeric data in memory and the data in the netCDF variable. For example, if you write a program that deals with all numeric data as double-precision floating point values, you can read netCDF data into double-precision arrays without knowing or caring what the external type of the netCDF variables are. On reading netCDF data, integers of various sizes and single-precision floating-point values will all be converted to double-precision, if you use the data access interface for double-precision values. Of course, you can avoid automatic numeric conversion by using the netCDF interface for a value type that corresponds to the external data type of each netCDF variable, where such value types exist.
The automatic numeric conversions performed by netCDF are easy to understand, because they behave just like assignment of data of one type to a variable of a different type. For example, if you read floating-point netCDF data as integers, the result is truncated towards zero, just as it would be if you assigned a floating-point value to an integer variable. Such truncation is an example of the loss of precision that can occur in numeric conversions.
Converting from one numeric type to another may result in an error if the target type is not capable of representing the converted value. For example, an integer may not be able to hold data stored externally as an IEEE floating-point number. When accessing an array of values, a range error is returned if one or more values are out of the range of representable values, but other values are converted properly.
Note that mere loss of precision in type conversion does not result in an error. For example, if you read double precision values into an integer, no error results unless the magnitude of the double precision value exceeds the representable range of integers on your platform. Similarly, if you read a large integer into a float incapable of representing all the bits of the integer in its mantissa, this loss of precision will not result in an error. If you want to avoid such precision loss, check the external types of the variables you access to make sure you use an internal type that has a compatible precision.
Whether a range error occurs in writing a large floating-point value near the boundary of representable values may be depend on the platform. The largest floating-point value you can write to a netCDF float variable is the largest floating-point number representable on your system that is less than 2 to the 128th power. The largest double precision value you can write to a double variable is the largest double-precision number representable on your system that is less than 2 to the 1024th power.