
CUDA Tools SDK
CUPTI User’s Guide

DA-05679-001_v01 | February 2011

Document Change History

Ver Date Resp Reason for change
v01 2011/1/19 DG Initial revision for CUDA Tools SDK 4.0

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | ii

CUPTI

The CUDA Profiling Tools Interface (CUPTI) enables the creation of profiling and tracing
tools that target CUDA applications. CUPTI provides two APIs, the Callback API and
the Event API. Using these APIs, you can develop profiling tools that give insight into the
CPU and GPU behavior of CUDA applications. CUPTI is delivered as a dynamic library
on all platforms supported by CUDA.

CUPTI Callback API
The CUPTI Callback API allows you to interject your own code at the entry and exit to
each CUDA runtime and driver API call. Using the callback API, you associate a callback
function with one or more CUDA API functions. When those CUDA functions are invoked
in the application, your callback function is invoked as well. The following terminology is
used by the callback API.

Callback ID: Each CUDA API function is given a unique ID so that you can identify it
within your callback. The CUDA driver API IDs are defined in
cupti_driver_cbid.h and the CUDA runtime API IDs are defined in
cupti_runtime_cbid.h. Both of these headers are included for you when you
include cupti.h.

Callback Site: A location in a CUDA API function where your callback code is invoked.
Currently there are two callback sites; one at CUDA API function entry and one at
function exit.

Callback Domain: CUDA API functions are grouped into domains to make it easier to
associate your callback functions with groups of related CUDA functions. There are
currently two callback domains, as defined by CUpti_CallbackDomain; one for
CUDA runtime functions and one for CUDA driver functions.

Subscriber: A subscriber is used to associate each of your callback functions with one or
more CUDA API functions.

The following code shows a typical sequence used to associate a callback function with one
or more CUDA API functions. To simplify the presentation error checking code has been

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 3

removed.

CUpti_SubscriberHandle subscriber;
MyDataStruct *my_data = ...;
...
cuptiSubscribe (&subscriber ,

(CUpti_CallbackFunc)my_callback , my_data);
cuptiEnableDomain (1, subscriber ,

CUPTI_CB_DOMAIN_RUNTIME_API);

First, cuptiSubscribe is used to initialize a subscriber with the my_callback callback
function. Next, cuptiEnableDomain is used to associate that callback with all the CUDA
runtime API functions. Using this code sequence will cause my_callback to be called
twice each time any of the CUDA runtime API functions are invoked, once on entry to the
CUDA function and once just before exit from the CUDA function. CUPTI callback API
functions cuptiEnableCallback and cuptiEnableAllDomains can also be used associate
CUDA API functions with a callback (see reference below for more information).

The following code shows a typical callback function.

void CUPTIAPI
my_callback(void *userdata , CUpti_CallbackDomain domain ,

CUpti_CallbackId cbid , const CUpti_CallbackData *←↩
cbInfo)

{
MyDataStruct *my_data = (MyDataStruct *) userdata;

if ((domain == CUPTI_CB_DOMAIN_RUNTIME_API) &&
(cbid == CUPTI_RUNTIME_TRACE_CBID_cudaMemcpy_v3020)) {

if (cbInfo ->callbackSite == CUPTI_API_ENTER) {
cudaMemcpy_v3020_params *funcParams =

(cudaMemcpy_v3020_params *)(cbInfo ->
functionParams);

size_t count = funcParams ->count;
enum cudaMemcpyKind kind = funcParams ->kind;
...

}
...

In your callback function, you use the CUpti_CallbackDomain and CUpti_CallbackID
parameters to determine which CUDA API function invocation is causing this callback. In
the example above, we are checking for the CUDA runtime cudaMemCpy function. The
CUpti_CallbackData parameter holds a structure of useful information that can be used

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 4

within the callback. In this case we use the callbackSite member of the structure to
detect that the callback is occurring on entry to cudaMemCpy, and we use the
functionParams member to access the parameters that were passed to cudaMemCpy. To
access the parameters we first cast functionParams to a structure type corresponding to
the cudaMemCpy function. These parameter structures are contained in
generated_cuda_runtime_api_meta.h, generated_cuda_meta.h, and a number of other
files. When possible these files are included for you by cupti.h.

The callback_event and callback_timestamp samples described on page 15 both
show how to use the callback API.

CUPTI Event API
The CUPTI Event API allows you to query, configure, start, stop, and read the event
counters on a CUDA-enabled device. The following terminology is used by the event API.

Event: An event is a countable activity, action, or occurrence on a device.

Event Domain: A device exposes one or more event domains. Each event domain
represents a group of related events available on that device. A device may have
multiple instances of a domain, indicating that the device can simultaneously record
multiple instances of each event within that domain.

Event Group: An event group is a collection of events that are managed together. The
number and type of events that can be added to an event group are subject to
device-specific limits. At any given time, a device may be configured to count events
from a limited number of event groups. All events in an event group must belong to
the same event domain.

The tables included in this guide list the events available for each device, as determined by
the device’s compute capability. You can also use the cuptiDeviceEnumEventDomains and
cuptiEventDomainEnumEvents functions to enumerate the domains and events available
on a device. The cupti_query sample described on page 15 shows how to use these
functions.

Configuring and reading event counts requires the following steps. First determine the
names of the events that you want to count, and then use the cuptiEventGroupCreate,
cuptiEventGetIdFromName, and cuptiEventGroupAddEvent functions to create and
initialize an event group with those events. If you are unable to add all the events to a
single event group then you will need to create multiple event groups.

To begin counting a set of events, enable the event group or groups that contain those
events by using the cuptiEventGroupEnable function. If your events are contained in
multiple event groups you may be unable to enable all of the event groups at the same
time, due to device limitations. In this case, you will need to gather the events across
multiple executions of the application.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 5

Use the cuptiEventGroupReadEvent and/or cuptiEventGroupReadAllEvents functions to
read the event values. When you are done collecting events, use the
cuptiEventGroupDisable function to stop counting of the events contained in an event
group. The callback_event sample described on page 15 shows how to use these
functions to create, enable, and disable event groups, and how to read event counts.

Collecting Kernel Execution Events
A common use of the event API is to count a set of events during the execution of a kernel
(as demonstrated by the callback_event sample). The following code shows a typical
callback used for this purpose. Assume that the callback was enabled only for a kernel
launch using the CUDA runtime (i.e. by cuptiEnableCallback(1, subscriber,
CUPTI_CB_DOMAIN_RUNTIME_API, CUPTI_RUNTIME_TRACE_CBID_cudaLaunch_v3020). To
simplify the presentation error checking code has been removed.

static void CUPTIAPI
getEventValueCallback(void *userdata ,

CUpti_CallbackDomain domain ,
CUpti_CallbackId cbid ,
const void *params)

{
const CUpti_CallbackData *cbData =

(CUpti_CallbackData *) params;

if (cbData ->callbackSite == CUPTI_API_ENTER) {
cudaThreadSynchronize ();
cuptiEventGroupEnable(eventGroup);

}

if (cbData ->callbackSite == CUPTI_API_EXIT) {
cudaThreadSynchronize ();
cuptiEventGroupReadEvent(eventGroup ,

CUPTI_EVENT_READ_FLAG_ACCUMULATE ,
eventId ,
&bytesRead , &eventVal);

cuptiEventGroupDisable(eventGroup);
}

}

Two synchronization points are used to ensure that events are counted only for the
execution of the kernel. If the application contains other threads that launch kernels, then

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 6

additional thread-level synchronization must also be introduced to ensure that those
threads do not launch kernels while the callback is collecting events. When the
cudaLaunch API is entered (that is, before the kernel is actually launched on the device),
cudaThreadSynchronize is used to wait until the GPU is idle. Then event collection is
start with cuptiEventGroupEnable.

When the cudaLaunch API is exited (that is, after the kernel is queued for execution on
the GPU) another cudaThreadSynchronize is used to cause the CPU thread to wait for
the kernel to finish execution. Finally, the event counts are read with
cuptiEventGroupReadEvent.

Sampling Events
The event API can also be used to sample event values while a kernel or kernels are
executing (as demonstrated by the event_sampling sample). The sample shows one
possible way to perform the sampling. Two threads are used in event_sampling: one
thread schedules the kernels and memcpys that perform the computation, while another
thread wakes periodically to sample an event counter. In this sample there is no
correlation of the event samples with what is happening on the GPU. To get some coarse
correlation, you can use cuptiDeviceGetTimestamp to collect the GPU timestamp at the
time of the sample and also at other interesting points in your application.

Interpreting Event Values
The tables below describe the events available for each device. Each event has a type that
indicates how the activity or action associated with that event is collected. The event
types are SM, TPC, and FB.

SM Event Type

The SM event type indicates that the event is collected for an action or activity that
occurs on one or more of the device’s streaming multiprocessors (SMs). A streaming
multiprocessor creates, manages, schedules, and executes threads in groups of 32 threads
called warps.

The SM event values typically represent activity or action of thread warps, and not the
activity or action of individual threads. Details of how each event is incremented are given
in the event tables below.

Two factors will impact the accuracy of the values collected for SM type events. First, due
to variations in system state, event values can vary across different, identical, runs of the
same application. Second, for devices with compute capability less than 2.0, SM events are
counted only for one SM. For devices with compute capability greater than 2.0 SM events

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 7

are counted for multiple, but not all, SMs. To get the most consistent results inspite of
these factors, it is best to have number of blocks for each kernel launched to be a multiple
of the total number of SMs on a device. In other words, the grid configuration should be
chosen such that the number of blocks launched on each SM is the same and also the
amount of work of interest per block is the same.

TPC Event Type

The TPC event type indicates that the event is collected for an action or activity that
occurs on the SMs within the device’s first Texture Processing Cluster (TPC). Devices
with compute capabiliity less than 1.3 have two SMs per TPC, and devices with compute
capability 1.3 have three SMs per TPC.

Several of the TPC type events measure coherent and incoherent memory transactions. A
coherent (coalesced) access is said to occur when the memory required for a half-warp’s
execution of a single global load or global store instruction can be accessed with a single
memory transaction of 32, 64, or 128 bytes. If the memory cannot be accessed with a
single memory transaction the access is incoherent. For an incoherent (non-coalesced)
access a separate memory transaction is issued for each thread in the half-warp,
significantly reducing performance. The requirements for coherent access vary based on
compute capability. Refer to the CUDA C Programming Guide for details.

FB Event Type

The FB event type indicates that the event is collected for an action or activity that
occurs on a DRAM partition.

Event Reference - Compute Capability 1.0 to 1.3
Devices with compute capability less than 2.0 implement two event domains, called
domain_a and domain_b. Table 1 and Table 2 give a description of each event available
in these domains. The Type column indicates the event type, as described above in the
Interpreting Event Values section. For the Capability columns, a Y indicates that the event
is available for that compute capability and an N indicates that the event is not available.

Capability
Event Name Description Type 1.0 1.1 1.2 1.3
tex_cache_hit Number of texture cache hits SM Y Y Y Y
tex_cache_miss Number of texture cache misses SM Y Y Y Y

Table 1: Capability 1.x Events For domain_a

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 8

Capability
Event Name Description Type 1.0 1.1 1.2 1.3
branch Number of branches taken by threads

executing a kernel. This event is
incremented by one if at least one
thread in a warp takes the branch.
Note that barrier instructions (__-
syncThreads()) also get counted as
branches

SM Y Y Y Y

divergent_branch Number of divergent branches within
a warp. This event is incremented by
one if at least one thread in a warp di-
verges (that is, follows a different exe-
cution path) via a data dependent con-
ditional branch. The event is incre-
mented by one at each point of diver-
gence in a warp

SM Y Y Y Y

instructions Number of instructions executed SM Y Y Y Y
warp_serialize If two addresses of a memory request

fall in the same memory bank, there
is a bank conflict and the access has
to be serialized. This event gives the
number of thread warps that serialize
on address conflicts to either shared or
constant memory

SM Y Y Y Y

gld_incoherent Number of non-coalesced global mem-
ory loads

TPC Y Y N N

gld_coherent Number of coalesced global memory
loads

TPC Y Y N N

gld_32b Number of 32 byte global memory
load transactions; incremented by 1
for each 32 byte transaction

TPC N N Y Y

gld_64b Number of 64 byte global memory
load transactions; incremented by 1
for each 64 byte transaction

TPC N N Y Y

gld_128b Number of 128 byte global memory
load transactions; incremented by 1
for each 128 byte transaction

TPC N N Y Y

gst_incoherent Number of non-coalesced global mem-
ory stores

TPC Y Y N N

gst_coherent Number of coalesced global memory
stores

TPC Y Y N N

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 9

Capability
Event Name Description Type 1.0 1.1 1.2 1.3
gst_32b Number of 32 byte global memory

store transactions; incremented by 2
for each 32 byte transaction

TPC N N Y Y

gst_64b Number of 64 byte global memory
store transactions; incremented by 4
for each 64 byte transaction

TPC N N Y Y

gst_128b Number of 128 byte global memory
store transactions; incremented by 8
for each 128 byte transaction

TPC N N Y Y

local_load Number of local memory load trans-
actions. Each local load request will
generate one transaction irrespective
of the size of the transaction

TPC Y Y Y Y

local_store Number of local memory store trans-
actions; incremented by 2 for each 32-
byte transaction, by 4 for each 64-byte
transaction and by 8 for each 128-byte
transaction

TPC Y Y Y Y

cta_launched Number of threads blocks launched on
a TPC

TPC Y Y Y Y

sm_cta_launched Number of threads blocks launched on
an SM

SM Y Y Y Y

prof_trigger_XX There are 8 such triggers (00-07) that
user can profile. Those are generic and
can be inserted in any place of the code
to collect the related information

SM Y Y Y Y

Table 2: Capability 1.x Events For domain_b

Event Reference - Compute Capability 2.x
Devices with compute capability 2.0 or greater implement two event domains, called
domain_a and domain_b. Table 3 and Table 4 give a description of each event available
in these domains. The Type column indicates the event type, as described above in the
Interpreting Event Values section. For the Capability columns, a Y indicates that the event
is available for that compute capability and an N indicates that the event is not available.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 10

Capability
Event Name Description Type 2.0 2.1
branch Number of branches taken by threads

executing a kernel. This counter will
be incremented by one if at least one
thread in a warp takes the branch

SM Y Y

divergent_branch Number of divergent branches within
a warp. This counter will be incre-
mented by one if at least one thread
in a warp diverges (that is, follows a
different execution path) via a data de-
pendent conditional branch

SM Y Y

warps_launched Number of warps launched SM Y Y
threads_launched Number of threads launched SM Y Y
active_warps Accumulated number of active warps

per cycle. For every cycle it incre-
ments by the number of active warps
in the cycle which can be in the range
0 to 48

SM Y Y

active_cycles Number of cycles a multiprocessor has
at least one active warp

SM Y Y

sm_cta_launched Number of thread blocks launched SM Y Y
local_load Number of local load instructions per

warp
SM Y Y

local_store Number of local store instructions per
warp

SM Y Y

gld_request Number of global load instructions per
warp

SM Y Y

gst_request Number of global store instructions
per warp

SM Y Y

shared_load Number of shared load instructions
per warp

SM Y Y

shared_store Number of shared store instructions
per warp

SM Y Y

l1_local_load_hit Number of local load hits in L1 cache.
This increments by 1, 2, or 4 for 32, 64
and 128 bit accesses respectively

SM Y Y

l1_local_load_miss Number of local load misses in L1
cache This increments by 1, 2, or 4 for
32, 64 and 128 bit accesses respectively

SM Y Y

l1_local_store_hit Number of local store hits in L1 cache.
This increments by 1, 2, or 4 for 32, 64
and 128 bit accesses respectively

SM Y Y

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 11

Capability
Event Name Description Type 2.0 2.1
l1_local_store_miss Number of local store misses in L1

cache. This increments by 1, 2, or 4
for 32, 64 and 128 bit accesses respec-
tively

SM Y Y

l1_global_load_hit Number of global load hits in L1 cache.
This increments by 1, 2, or 4 for 32, 64
and 128 bit accesses respectively

SM Y Y

l1_global_load_miss Number of global load misses in L1
cache. This increments by 1, 2, or 4
for 32, 64 and 128 bit accesses respec-
tively

SM Y Y

uncached_global_-
load_transaction

Number of uncached global load trans-
actions. This increments by 1, 2, or 4
for 32, 64 and 128 bit accesses respec-
tively

SM Y Y

global_store_-
transaction

Number of global store transactions.
This increments by 1, 2, or 4 for 32,
64 and 128 bit accesses respectively

SM Y Y

l1_shared_bank_-
conflict

Number of shared bank conflicts
caused due to addresses for two or
more shared memory requests fall in
the same memory bank

SM Y Y

prof_trigger_XX There are 8 such triggers (00-07) that
user can profile. The triggers are
generic and can be inserted in any
place of the code to collect the related
information

SM Y Y

inst_issued Number of instructions issued includ-
ing replays

SM Y N

inst_issued1_0 Number of times instruction group 0
issued one instruction

SM N Y*

inst_issued2_0 Number of times instruction group 0
issued two instructions

SM N Y*

inst_issued1_1 Number of times instruction group 1
issued one instruction

SM N Y*

inst_issued2_1 Number of times instruction group 1
issued two instructions

SM N Y*

inst_executed Number of instructions executed, not
including replays

SM Y Y

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 12

Capability
Event Name Description Type 2.0 2.1
thread_inst_-
executed_0

Number of instructions executed by
all threads, not including replays, in
pipeline 0. For each instruction ex-
ecuted increments by the number of
threads in the warp

SM Y Y

thread_inst_-
executed_1

Number of instructions executed by
all threads, not including replays, in
pipeline 1. For each instruction ex-
ecuted increments by the number of
threads in the warp

SM Y Y

tex0_cache_sector_-
queries

Number of texture cache requests.
This increments by 1 for each 32-byte
access

SM Y Y

tex0_cache_sector_-
misses

Number of texture cache misses. This
increments by 1 for each 32-byte access

SM Y Y

tex1_cache_sector_-
queries

Number of texture cache requests.
This increments by 1 for each 32-byte
access

SM N Y

tex1_cache_sector_-
misses

Number of texture cache misses. This
increments by 1 for each 32-byte access

SM N Y

Table 3: Capability 2.x Events For domain_a

Notes:

I Y*: Total instructions issued for compute capability 2.1 can be calculated as:
inst_issued1_0 + (inst_issued2_0 * 2) + inst_issued1_1 + (inst_issued2_1 * 2)

Capability
Event Name Description Type 2.0 2.1
l2_subp0_write_-
sector_misses

Number of write misses in slice 0 of L2
cache. This increments by 1 for each
32-byte access

FB Y Y

l2_subp1_write_-
sector_misses

Number of write misses in slice 1 of L2
cache. This increments by 1 for each
32-byte access

FB Y Y

l2_subp0_read_-
sector_misses

Number of read misses in slice 0 of L2
cache. This increments by 1 for each
32-byte access

FB Y Y

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 13

Capability
Event Name Description Type 2.0 2.1
l2_subp1_read_-
sector_misses

Number of read misses in slice 1 of L2
cache. This increments by 1 for each
32-byte access

FB Y Y

l2_subp0_write_-
sector_queries

Number of write requests from L1 to
slice 0 of L2 cache. This increments by
1 for each 32-byte access

FB Y Y

l2_subp1_write_-
sector_queries

Number of write requests from L1 to
slice 1 of L2 cache. This increments by
1 for each 32-byte access

FB Y Y

l2_subp0_read_-
sector_queries

Number of read requests from L1 to
slice 0 of L2 cache. This increments
by 1 for each 32-byte access

FB Y Y

l2_subp1_read_-
sector_queries

Number of read requests from L1 to
slice 1 of L2 cache. This increments
by 1 for each 32-byte access

FB Y Y

l2_subp0_read_-
tex_sector_queries

Number of read requests from TEX to
slice 0 of L2 cache. This increments by
1 for each 32-byte access

FB Y Y

l2_subp1_read_-
tex_sector_queries

Number of read requests from TEX to
slice 1 of L2 cache. This increments by
1 for each 32-byte access

FB Y Y

fb_subp0_read_-
sectors

Number of DRAM read requests to
sub partition 0, increments by 1 for 32
byte access

FB Y Y

fb_subp1_read_-
sectors

Number of DRAM read requests to
sub partition 1, increments by 1 for 32
byte access

FB Y Y

fb_subp0_write_-
sectors

Number of DRAM write requests to
sub partition 0, increments by 1 for 32
byte access

FB Y Y

fb_subp1_write_-
sectors

Number of DRAM write requests to
sub partition 1, increments by 1 for 32
byte access

FB Y Y

fb0_subp0_read_-
sectors

Number of DRAM read requests to
sub partition 0 of DRAM unit 0, in-
crements by 1 for 32 byte access

FB N Y**

fb0_subp1_read_-
sectors

Number of DRAM read requests to
sub partition 1 of DRAM unit 0, in-
crements by 1 for 32 byte access

FB N Y**

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 14

Capability
Event Name Description Type 2.0 2.1
fb0_subp0_write_-
sectors

Number of DRAM write requests to
sub partition 0 of DRAM unit 0, in-
crements by 1 for 32 byte access

FB N Y**

fb0_subp1_write_-
sectors

Number of DRAM write requests to
sub partition 1 of DRAM unit 0, in-
crements by 1 for 32 byte access

FB N Y**

fb1_subp0_read_-
sectors

Number of DRAM read requests to
sub partition 0 of DRAM unit 1, in-
crements by 1 for 32 byte access

FB N Y**

fb1_subp1_read_-
sectors

Number of DRAM read requests to
sub partition 1 of DRAM unit 1, in-
crements by 1 for 32 byte access

FB N Y**

fb1_subp0_write_-
sectors

Number of DRAM write requests to
sub partition 0 of DRAM unit 1, in-
crements by 1 for 32 byte access

FB N Y**

fb1_subp1_write_-
sectors

Number of DRAM write requests to
sub partition 1 of DRAM unit 1, in-
crements by 1 for 32 byte access

FB N Y**

Table 4: Capability 2.x Events For domain_b

Notes:

I Y**: Devices will have either fb_** counters or fb0_** and fb1_** counters. Total
DRAM reads and writes are calculated by adding values for all subpartitions.

I fb* and l2_*_misses events often give a large value when a display is connected to
the device. To get accurate values do not connect a display to the device collecting
event counts.

I l2_*_queries event values can be greater than l2_*_misses event values because
l2_*_queries counts only the requests from L1 to L2 (does not include, for example,
texture requests) while l2_*_misses counts all misses

I Initializing device memory on the host fetches data from DRAM to L2, which can
modify the fb*_read_sectors event values for a kernel

Samples
The CUPTI installation includes several samples that demonstrate the use of the CUPTI
APIs.The samples are:

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 15

cupti_query: This sample shows how to query CUDA-enabled devices for their event
domains and events.

callback_event: This sample shows how to use both the callback and event APIs to record
the events that occur during the execution of a simple kernel. The sample shows the
required ordering for synchronization, and for event group enabling, disabling and
reading.

callback_timestamp: This sample shows how to use the callback API to record a trace of
API start and stop times.

event_sampling: This sample shows how to use the event API to sample events using a
separate host thread.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 16

CUPTI Reference

CUPTI Version
Defines

I #define CUPTI_API_VERSION 1

The API version for this implementation of CUPTI.

Functions
I CUptiResult cuptiGetVersion (uint32_t ∗version)

Get the CUPTI API version.

Define Documentation
#define CUPTI_API_VERSION 1

The API version for this implementation of CUPTI. This define along with
cuptiGetVersion can be used to dynamically detect if the version of CUPTI compiled
against matches the version of the loaded CUPTI library.

Function Documentation
CUptiResult cuptiGetVersion (uint32_t ∗ version)

Return the API version in ∗version.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 17

Parameters:

version Returns the version
Return values:

CUPTI_SUCCESS on success

CUPTI_ERROR_INVALID_PARAMETER if version is NULL

See also:

CUPTI_API_VERSION

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 18

CUPTI Result Codes
Enumerations

I enum CUptiResult {

CUPTI_SUCCESS = 0,

CUPTI_ERROR_INVALID_PARAMETER = 1,

CUPTI_ERROR_INVALID_DEVICE = 2,

CUPTI_ERROR_INVALID_CONTEXT = 3,

CUPTI_ERROR_INVALID_EVENT_DOMAIN_ID = 4,

CUPTI_ERROR_INVALID_EVENT_ID = 5,

CUPTI_ERROR_INVALID_EVENT_NAME = 6,

CUPTI_ERROR_INVALID_OPERATION = 7,

CUPTI_ERROR_OUT_OF_MEMORY = 8,

CUPTI_ERROR_HARDWARE = 9,

CUPTI_ERROR_PARAMETER_SIZE_NOT_SUFFICIENT = 10,

CUPTI_ERROR_API_NOT_IMPLEMENTED = 11,

CUPTI_ERROR_MAX_LIMIT_REACHED = 12,

CUPTI_ERROR_NOT_READY = 13,

CUPTI_ERROR_NOT_COMPATIBLE = 14,

CUPTI_ERROR_NOT_INITIALIZED = 15,

CUPTI_ERROR_UNKNOWN = 999 }

Functions
I CUptiResult cuptiGetResultString (CUptiResult result, const char ∗∗str)

Get the descriptive string for a CUptiResult.

Enumeration Type Documentation

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 19

enum CUptiResult

Result codes.
Enumerator:

CUPTI_SUCCESS No error.

CUPTI_ERROR_INVALID_PARAMETER One or more of the parameters is
invalid.

CUPTI_ERROR_INVALID_DEVICE The device does not correspond to a valid
CUDA device.

CUPTI_ERROR_INVALID_CONTEXT The context is NULL or not valid.

CUPTI_ERROR_INVALID_EVENT_DOMAIN_ID The event domain id is
invalid.

CUPTI_ERROR_INVALID_EVENT_ID The event id is invalid.

CUPTI_ERROR_INVALID_EVENT_NAME The event name is invalid.

CUPTI_ERROR_INVALID_OPERATION The current operation cannot be
performed due to dependency on other factors.

CUPTI_ERROR_OUT_OF_MEMORY Unable to allocate enough memory to
perform the requested operation.

CUPTI_ERROR_HARDWARE The performance monitoring hardware could not
be reserved or some other hardware error occurred.

CUPTI_ERROR_PARAMETER_SIZE_NOT_SUFFICIENT The output buffer
size is not sufficient to return all requested data.

CUPTI_ERROR_API_NOT_IMPLEMENTED API is not implemented.

CUPTI_ERROR_MAX_LIMIT_REACHED The maximum limit is reached.

CUPTI_ERROR_NOT_READY The object is not yet ready to perform the
requested operation.

CUPTI_ERROR_NOT_COMPATIBLE The current operation is not compatible
with the current state of the object

CUPTI_ERROR_NOT_INITIALIZED CUPTI is unable to initialize its
connection to the CUDA driver.

CUPTI_ERROR_UNKNOWN An unknown internal error has occurred.

Function Documentation
CUptiResult cuptiGetResultString (CUptiResult result, const char
∗∗ str)

Return the descriptive string for a CUptiResult in ∗str.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 20

Note:

Thread-safety: this function is thread safe.

Parameters:

result The result to get the string for

str Returns the string

Return values:

CUPTI_SUCCESS on success

CUPTI_ERROR_INVALID_PARAMETER if str is NULL or result is not a valid
CUptiResult

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 21

CUPTI Callback API
Data Structures

I struct CUpti_CallbackData

Data passed into a runtime or driver API callback function.

Typedefs
I typedef void(∗ CUpti_CallbackFunc)(void ∗userdata, CUpti_CallbackDomain

domain, CUpti_CallbackId cbid, const CUpti_CallbackData ∗cbdata)
Function type for an API callback.

I typedef uint32_t CUpti_CallbackId

An ID for a driver or runtime API function.

I typedef CUpti_CallbackDomain ∗ CUpti_DomainTable

Pointer to an array of callback domains.

I typedef struct CUpti_Subscriber_st ∗ CUpti_SubscriberHandle

A callback subscriber.

Enumerations
I enum CUpti_ApiCallbackSite {

CUPTI_API_ENTER = 0,

CUPTI_API_EXIT = 1 }

Specifies the point in an API call that a callback is issued.

I enum CUpti_CallbackDomain {

CUPTI_CB_DOMAIN_INVALID = 0,

CUPTI_CB_DOMAIN_DRIVER_API = 1,

CUPTI_CB_DOMAIN_RUNTIME_API = 2 }

Callback domains.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 22

Functions
I CUptiResult cuptiEnableAllDomains (uint32_t enable, CUpti_SubscriberHandle

subscriber)

Enable or disable all callbacks in all domains.

I CUptiResult cuptiEnableCallback (uint32_t enable, CUpti_SubscriberHandle
subscriber, CUpti_CallbackDomain domain, CUpti_CallbackId cbid)

Enable or disabled callbacks for a specific domain and function ID.

I CUptiResult cuptiEnableDomain (uint32_t enable, CUpti_SubscriberHandle
subscriber, CUpti_CallbackDomain domain)

Enable or disabled all callbacks for a specific domain.

I CUptiResult cuptiGetCallbackState (uint32_t ∗enable, CUpti_SubscriberHandle
subscriber, CUpti_CallbackDomain domain, CUpti_CallbackId cbid)

Get the current enabled/disabled state of a callback for a specific domain and function ID.

I CUptiResult cuptiSubscribe (CUpti_SubscriberHandle ∗subscriber,
CUpti_CallbackFunc callback, void ∗userdata)

Initialize a callback subscriber with a callback function and user data.

I CUptiResult cuptiSupportedDomains (size_t ∗domainCount, CUpti_DomainTable
∗domainTable)

Get the available callback domains.

I CUptiResult cuptiUnsubscribe (CUpti_SubscriberHandle subscriber)

Unregister a callback subscriber.

Typedef Documentation
typedef void(∗ CUpti_CallbackFunc)(void ∗userdata,
CUpti_CallbackDomain domain, CUpti_CallbackId cbid, const
CUpti_CallbackData ∗cbdata)

Function type for an API callback

Parameters:

userdata User data supplied at subscription of the callback

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 23

domain The domain of the callback

cbid The ID of the API function associated with this callback

cbdata Data passed to the callback.

typedef uint32_t CUpti_CallbackId

An ID for a driver or runtime API function. Within a driver API callback this should be
interpreted as a CUpti_driver_api_trace_cbid value. Within a runtime API callback this
should be interpreted as a CUpti_runtime_api_trace_cbid value.

Enumeration Type Documentation
enum CUpti_ApiCallbackSite

Specifies the point in an API call that a callback is issued. This value is communicated to
the callback function via CUpti_CallbackData::callbackSite.
Enumerator:

CUPTI_API_ENTER The callback is at the entry of the API call.

CUPTI_API_EXIT The callback is at the exit of the API call.

enum CUpti_CallbackDomain

Callback domains. Each domain represents callback points for a group of related API
functions.
Enumerator:

CUPTI_CB_DOMAIN_INVALID Invalid domain.

CUPTI_CB_DOMAIN_DRIVER_API Domain containing callback points for all
driver API functions.

CUPTI_CB_DOMAIN_RUNTIME_API Domain containing callback points for
all runtime API functions.

Function Documentation
CUptiResult cuptiEnableAllDomains (uint32_t enable,
CUpti_SubscriberHandle subscriber)

Enable or disable all callbacks in all domains.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 24

Note:

Thread-safety: function is thread safe for different subscribers, but each subscriber
must serialize access to cuptiGetCallbackState, cuptiEnableCallback,
cuptiEnableDomain, and cuptiEnableAllDomains. For example, if
cuptiGetCallbackEnabled(sub, d, ∗) and cuptiEnableAllDomains(sub) are called
concurrently, the results are undefined.

Parameters:

enable New enable state for all callbacks in all domain. Zero disables all callbacks,
non-zero enables all callbacks.

subscriber - Handle to callback subscription

Return values:

CUPTI_SUCCESS on success
CUPTI_ERROR_NOT_INITIALIZED if unable to initialized CUPTI
CUPTI_ERROR_INVALID_PARAMETER if subscriber is invalid

CUptiResult cuptiEnableCallback (uint32_t enable,
CUpti_SubscriberHandle subscriber, CUpti_CallbackDomain
domain, CUpti_CallbackId cbid)

Enable or disabled callbacks for a subscriber for a specific domain and function ID.

Note:

Thread-safety: function is thread safe for different subscribers, but each subscriber
must serialize access to cuptiGetCallbackState, cuptiEnableCallback,
cuptiEnableDomain, and cuptiEnableAllDomains. For example, if
cuptiGetCallbackEnabled(sub, d, c) and cuptiEnableCallback(sub, d, c) are called
concurrently, the results are undefined.

Parameters:

enable New enable state for the callback. Zero disables the callback, non-zero enables
the callback.

subscriber - Handle to callback subscription
domain The domain of the callback
cbid The ID of the API function

Return values:

CUPTI_SUCCESS on success
CUPTI_ERROR_NOT_INITIALIZED if unable to initialized CUPTI
CUPTI_ERROR_INVALID_PARAMETER if subscriber, domain or cbid is

invalid.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 25

CUptiResult cuptiEnableDomain (uint32_t enable,
CUpti_SubscriberHandle subscriber, CUpti_CallbackDomain
domain)

Enable or disabled all callbacks for a specific domain.

Note:

Thread-safety: function is thread safe for different subscribers, but each subscriber
must serialize access to cuptiGetCallbackState, cuptiEnableCallback,
cuptiEnableDomain, and cuptiEnableAllDomains. For example, if
cuptiGetCallbackEnabled(sub, d, ∗) and cuptiEnableDomain(sub, d) are called
concurrently, the results are undefined.

Parameters:

enable New enable state for all callbacks in the domain. Zero disables all callbacks,
non-zero enables all callbacks.

subscriber - Handle to callback subscription

domain The domain of the callback
Return values:

CUPTI_SUCCESS on success

CUPTI_ERROR_NOT_INITIALIZED if unable to initialized CUPTI

CUPTI_ERROR_INVALID_PARAMETER if subscriber or domain is invalid

CUptiResult cuptiGetCallbackState (uint32_t ∗ enable,
CUpti_SubscriberHandle subscriber, CUpti_CallbackDomain
domain, CUpti_CallbackId cbid)

Returns non-zero in ∗enable if the callback for a domain and API function is enabled, and
zero if not enabled.
Note:

Thread-safety: function is thread safe for different subscribers, but each subscriber
must serialize access to cuptiGetCallbackState, cuptiEnableCallback,
cuptiEnableDomain, and cuptiEnableAllDomains. For example, if
cuptiGetCallbackEnabled(sub, d, c) and cuptiEnableCallback(sub, d, c) are called
concurrently, the results are undefined.

Parameters:

enable Returns non-zero if callback enabled, zero if not enabled

subscriber Handle to the initialize subscriber

domain The domain of the callback

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 26

cbid The ID of the API function
Return values:

CUPTI_SUCCESS on success

CUPTI_ERROR_NOT_INITIALIZED if unable to initialized CUPTI

CUPTI_ERROR_INVALID_PARAMETER if enabled is NULL, or if subscriber,
domain or cbid is invalid.

CUptiResult cuptiSubscribe (CUpti_SubscriberHandle ∗
subscriber, CUpti_CallbackFunc callback, void ∗ userdata)

Initializes a callback subscriber with a callback function and (optionally) a pointer to user
data. The returned subscriber handle can be used to enable and disable the callback for
specific domains and API functions. data can also be provided.
Note:

This function does not enable any callbacks.
Thread-safety: this function is thread safe.

Parameters:

subscriber Returns handle to initialize subscriber

callback The callback function

userdata A pointer to user data. This data will be passed to the callback function via
the userdata paramater.

Return values:

CUPTI_SUCCESS on success

CUPTI_ERROR_OUT_OF_MEMORY

CUPTI_ERROR_NOT_INITIALIZED if unable to initialize CUPTI

CUPTI_ERROR_INVALID_PARAMETER if subscriber is NULL

CUPTI_ERROR_UNKNOWN if the subscriber limit is reached

CUptiResult cuptiSupportedDomains (size_t ∗ domainCount,
CUpti_DomainTable ∗ domainTable)

Returns in ∗domainTable an array of size ∗domainCount of all the available callback
domains. A callback domain is a set of callback points for a related group of API
functions.
Note:

Thread-safety: this function is thread safe.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 27

Parameters:

domainCount Returns number of callback domains

domainTable Returns pointer to array of available callback domains

Return values:

CUPTI_SUCCESS on success

CUPTI_ERROR_NOT_INITIALIZED if unable to initialize CUPTI

CUPTI_ERROR_INVALID_PARAMETER if domainCount or domainTable are
NULL

CUptiResult cuptiUnsubscribe (CUpti_SubscriberHandle
subscriber)

Removes a callback subscriber so that no future callbacks will be issued to that subscriber.

Note:

Thread-safety: this function is thread safe.

Parameters:

subscriber Handle to the initialize subscriber
Return values:

CUPTI_SUCCESS on success

CUPTI_ERROR_NOT_INITIALIZED if unable to initialized CUPTI

CUPTI_ERROR_INVALID_PARAMETER if subscriber is NULL or not
initialized

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 28

CUpti_CallbackData Reference
Data passed into a runtime or driver API callback function.

Data Fields
I CUpti_ApiCallbackSite callbackSite
I CUcontext context
I uint64_t contextUid
I uint64_t ∗ correlationData
I const char ∗ functionName
I const void ∗ functionParams
I void ∗ functionReturnValue
I const char ∗ symbolName

Detailed Description
Data passed into a runtime or driver API callback function as the cbdata argument to
CUpti_CallbackFunc. The callback data is valid only within the invocation of the callback
function that is passed the data. If you need to retain some data for use outside of the
callback, you must make a copy of that data. For example, if you make a shallow copy of
CUpti_CallbackData within a callback, you cannot dereference functionParams outside of
that callback to access the function parameters. functionName is an exception: the string
pointed to by functionName is a global constant and so may be accessed in any context.

Field Documentation
CUpti_ApiCallbackSite CUpti_CallbackData::callbackSite

Point in the runtime or driver function from where the callback was issued.

CUcontext CUpti_CallbackData::context

Driver context current to the thread, or null if no context is current. This value can change
from the entry to exit callback of a runtime API function if the runtime initializes a
context.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 29

uint64_t CUpti_CallbackData::contextUid

Unique ID for the CUDA context associated with the thread. The UIDs are assigned
sequentially as contexts are created and are unique within a process. A UID of zero
indicates that there is no context current to the thread, or that a context has not yet been
attached to the thread during runtime-driver interop.

uint64_t∗ CUpti_CallbackData::correlationData

Pointer to data shared between the entry and exit callbacks of a given runtime or drive
API function invocation. This field can be used to pass 64-bit values from the entry
callback to the corresponding exit callback.

const char∗ CUpti_CallbackData::functionName

Name of the runtime or driver API function which issued the callback.

const void∗ CUpti_CallbackData::functionParams

Pointer to the arguments passed to the runtime or driver API call. See
generated_cuda_runtime_api_meta::h and generated_cuda_meta::h for structure
definitions for the parameters for each runtime and driver API function.

void∗ CUpti_CallbackData::functionReturnValue

Pointer to the return value of the runtime or driver API call. This field is only valid within
the exit::CUPTI_API_EXIT callback. For a runtime API functionReturnValue points
to a cudaError_t. For a driver API functionReturnValue points to a CUresult.

const char∗ CUpti_CallbackData::symbolName

Name of the symbol operated on by the runtime or driver API function which issued the
callback. This entry is valid only for the runtime cudaLaunch callback (i.e.
CUPTI_RUNTIME_TRACE_CBID_cudaLaunch_v3020), where it returns the name of
the kernel.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 30

CUPTI Event API
Typedefs

I typedef uint32_t CUpti_EventDomainID

ID for an event domain.

I typedef void ∗ CUpti_EventGroup

A group of events.

I typedef uint32_t CUpti_EventID

ID for an event.

Enumerations
I enum CUpti_DeviceAttribute {

CUPTI_DEVICE_ATTR_MAX_EVENT_ID = 1,

CUPTI_DEVICE_ATTR_MAX_EVENT_DOMAIN_ID = 2 }

Device attributes.

I enum CUpti_EventAttribute {

CUPTI_EVENT_ATTR_NAME = 0,

CUPTI_EVENT_ATTR_SHORT_DESCRIPTION = 1,

CUPTI_EVENT_ATTR_LONG_DESCRIPTION = 2 }

Event attributes.

I enum CUpti_EventDomainAttribute {

CUPTI_EVENT_DOMAIN_ATTR_NAME = 0,

CUPTI_EVENT_DOMAIN_ATTR_INSTANCE_COUNT = 1,

CUPTI_EVENT_DOMAIN_MAX_EVENTS = 2 }

Event domain attributes.

I enum CUpti_EventGroupAttribute {

CUPTI_EVENT_GROUP_ATTR_EVENT_DOMAIN_ID = 0,

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 31

CUPTI_EVENT_GROUP_ATTR_PROFILE_ALL_DOMAIN_INSTANCES =
1,

CUPTI_EVENT_GROUP_ATTR_USER_DATA = 2,

CUPTI_EVENT_GROUP_ATTR_NUM_EVENTS = 3 }

Event group attributes.

I enum CUpti_ReadEventFlags { CUPTI_EVENT_READ_FLAG_NONE = 0 }

Flags for cuptiEventGroupReadEvent an cuptiEventGroupReadAllEvents.

Functions
I CUptiResult cuptiDeviceEnumEventDomains (CUdevice device, size_t
∗arraySizeBytes, CUpti_EventDomainID ∗domainArray)

Get the event domains for a device.

I CUptiResult cuptiDeviceGetAttribute (CUdevice device, CUpti_DeviceAttribute
attrib, uint64_t ∗value)

Read a device attribute.

I CUptiResult cuptiDeviceGetNumEventDomains (CUdevice device, uint32_t
∗numdomains)

Get the number of domains for a device.

I CUptiResult cuptiDeviceGetTimestamp (CUcontext context, uint64_t ∗timestamp)

Read a device timestamp.

I CUptiResult cuptiEventDomainEnumEvents (CUdevice device,
CUpti_EventDomainID eventDomain, size_t ∗arraySizeBytes, CUpti_EventID
∗eventArray)

Get the events in a domain.

I CUptiResult cuptiEventDomainGetAttribute (CUdevice device,
CUpti_EventDomainID eventDomain, CUpti_EventDomainAttribute attrib, size_t
∗valueSize, void ∗value)

Read an event domain attribute.

I CUptiResult cuptiEventDomainGetNumEvents (CUdevice device,

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 32

CUpti_EventDomainID eventDomain, uint32_t ∗numevents)

Get number of events in a domain.

I CUptiResult cuptiEventGetAttribute (CUdevice device, CUpti_EventID event,
CUpti_EventAttribute attrib, size_t ∗valueSize, void ∗value)

Get an event attribute.

I CUptiResult cuptiEventGetIdFromName (CUdevice device, const char ∗eventName,
CUpti_EventID ∗event)

Find an event by name.

I CUptiResult cuptiEventGroupAddEvent (CUpti_EventGroup eventGroup,
CUpti_EventID event)

Add an event to an event group.

I CUptiResult cuptiEventGroupCreate (CUcontext context, CUpti_EventGroup
∗eventGroup, uint32_t flags)

Create a new event group for a context.

I CUptiResult cuptiEventGroupDestroy (CUpti_EventGroup eventGroup)

Destroy an event group.

I CUptiResult cuptiEventGroupDisable (CUpti_EventGroup eventGroup)

Disable an event group.

I CUptiResult cuptiEventGroupEnable (CUpti_EventGroup eventGroup)

Enable an event group.

I CUptiResult cuptiEventGroupGetAttribute (CUpti_EventGroup eventGroup,
CUpti_EventGroupAttribute attrib, uint64_t ∗value)

Read an event group attribute.

I CUptiResult cuptiEventGroupReadAllEvents (CUpti_EventGroup eventGroup,
CUpti_ReadEventFlags flags, size_t ∗bufferSizeBytes, uint64_t ∗counterDataBuffer,
size_t ∗arraySizeBytes, CUpti_EventID ∗eventArray, size_t ∗numCountersRead)

Read the values for all the events in an event group.

I CUptiResult cuptiEventGroupReadEvent (CUpti_EventGroup eventGroup,
CUpti_ReadEventFlags flags, CUpti_EventID event, size_t ∗bufferSizeBytes,
uint64_t ∗counterData)

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 33

Read the value for an event in an event group.

I CUptiResult cuptiEventGroupRemoveAllEvents (CUpti_EventGroup eventGroup)

Remove all events from an event group.

I CUptiResult cuptiEventGroupRemoveEvent (CUpti_EventGroup eventGroup,
CUpti_EventID event)

Remove an event from an event group.

I CUptiResult cuptiEventGroupResetAllEvents (CUpti_EventGroup eventGroup)

Zero all the event counts in an event group.

I CUptiResult cuptiEventGroupSetAttribute (CUpti_EventGroup eventGroup,
CUpti_EventGroupAttribute attrib, uint64_t value)

Write an event group attribute.

Typedef Documentation
typedef uint32_t CUpti_EventDomainID

ID for an event domain. An event domain represents a group of related events. A device
may have multiple instances of a domain, indicating that the device can simultaneously
record multiple instances of each event within that domain.

typedef void∗ CUpti_EventGroup

An event group is a collection of events that are managed together. All events in an event
group must belong to the same domain.

typedef uint32_t CUpti_EventID

An event represents a countable activity, action, or occurrence on the device.

Enumeration Type Documentation
enum CUpti_DeviceAttribute

CUPTI device attributes. These attriutes can be read using cuptiDeviceGetAttribute.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 34

Enumerator:

CUPTI_DEVICE_ATTR_MAX_EVENT_ID Number of event IDs for a device.
Value is an integer

CUPTI_DEVICE_ATTR_MAX_EVENT_DOMAIN_ID Number of event
domain IDs for a device. Value is an integer

enum CUpti_EventAttribute

Event attributes. These attributes can be read using cuptiEventGetAttribute.
Enumerator:

CUPTI_EVENT_ATTR_NAME Event name. Value is a null terminated const
c-string

CUPTI_EVENT_ATTR_SHORT_DESCRIPTION Short description of event.
Value is a null terminated const c-string

CUPTI_EVENT_ATTR_LONG_DESCRIPTION Long description of event.
Value is a null terminated const c-string

enum CUpti_EventDomainAttribute

Event domain attributes. These attributes can be read using
cuptiEventDomainGetAttribute.
Enumerator:

CUPTI_EVENT_DOMAIN_ATTR_NAME Event domain name. Value is a null
terminated const c-string

CUPTI_EVENT_DOMAIN_ATTR_INSTANCE_COUNT Number of instances
of the domain. Value is an integer

CUPTI_EVENT_DOMAIN_MAX_EVENTS Maximum number of events
available in the domain. Value is an integer

enum CUpti_EventGroupAttribute

Event group attributes. These attributes can be read using cuptiEventGroupGetAttribute.
Attributes marked [rw] can also be written using cuptiEventGroupSetAttribute.
Enumerator:

CUPTI_EVENT_GROUP_ATTR_EVENT_DOMAIN_ID The domain to which
the event group is bound. This attribute is set when the first event is added to
the group. Value is a CUpti_EventDomainID.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 35

CUPTI_EVENT_GROUP_ATTR_PROFILE_ALL_DOMAIN_INSTANCES
[rw] Profile all the instances of the domain for this eventgroup. This feature can
be used to get load balancing across all instances of a domain. Value is an
integer.

CUPTI_EVENT_GROUP_ATTR_USER_DATA [rw] Reserved for user data.

CUPTI_EVENT_GROUP_ATTR_NUM_EVENTS Number of events in the
group. Value is an integer.

enum CUpti_ReadEventFlags

Flags for cuptiEventGroupReadEvent an cuptiEventGroupReadAllEvents.
Enumerator:

CUPTI_EVENT_READ_FLAG_NONE No flags.

Function Documentation
CUptiResult cuptiDeviceEnumEventDomains (CUdevice device,
size_t ∗ arraySizeBytes, CUpti_EventDomainID ∗ domainArray)

Returns the event domains IDs in domainArray for a device. The size of the domainArray
buffer is given by ∗arraySizeBytes. The size of the domainArray buffer must be at least
numdomains ∗ sizeof(CUpti_EventDomainID) or else all domains will not be returned. The
value returned in ∗arraySizeBytes contains the number of bytes returned in domainArray.

Parameters:

device The CUDA device

arraySizeBytes The size of domainArray in bytes, and returns the number of bytes
written to domainArray

domainArray Returns the IDs of the event domains for the device

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_DEVICE

CUPTI_ERROR_INVALID_PARAMETER if arraySizeBytes or domainArray are
NULL

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 36

CUptiResult cuptiDeviceGetAttribute (CUdevice device,
CUpti_DeviceAttribute attrib, uint64_t ∗ value)

Read a device attribute and return it in ∗value.
Parameters:

device The CUDA device
attrib The attribute to read
value Returns the value of the attribute

Return values:

CUPTI_SUCCESS
CUPTI_ERROR_NOT_INITIALIZED
CUPTI_ERROR_INVALID_DEVICE
CUPTI_ERROR_INVALID_PARAMETER if attrib is not a device attribute, or if

value is NULL

CUptiResult cuptiDeviceGetNumEventDomains (CUdevice device,
uint32_t ∗ numdomains)

Returns the number of domains in numdomains for a device.
Parameters:

device The CUDA device
numdomains Returns the number of domains

Return values:

CUPTI_SUCCESS
CUPTI_ERROR_NOT_INITIALIZED
CUPTI_ERROR_INVALID_DEVICE
CUPTI_ERROR_INVALID_PARAMETER if numdomains is NULL

CUptiResult cuptiDeviceGetTimestamp (CUcontext context,
uint64_t ∗ timestamp)

Returns the device timestamp in ∗timestamp. The timestamp is reported in nanoseconds
and indicates the time since the device was last reset.
Parameters:

context A context on the device from which to get the timestamp
timestamp Returns the device timestamp

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 37

Return values:

CUPTI_SUCCESS
CUPTI_ERROR_NOT_INITIALIZED
CUPTI_ERROR_INVALID_CONTEXT
CUPTI_ERROR_INVALID_PARAMETER is timestamp is NULL

CUptiResult cuptiEventDomainEnumEvents (CUdevice device,
CUpti_EventDomainID eventDomain, size_t ∗ arraySizeBytes,
CUpti_EventID ∗ eventArray)

Returns the event IDs in eventArray for a domain. The size of the eventArray buffer is
given by ∗arraySizeBytes. The size of the eventArray buffer must be at least
numdomainevents ∗ sizeof(CUpti_EventID) or else all events will not be returned. The
value returned in ∗arraySizeBytes contains the number of bytes returned in eventArray.

Parameters:

device The CUDA device
eventDomain ID of the event domain
arraySizeBytes The size of eventArray in bytes, and returns the number of bytes

written to eventArray
eventArray Returns the IDs of the events in the domain

Return values:

CUPTI_SUCCESS
CUPTI_ERROR_NOT_INITIALIZED
CUPTI_ERROR_INVALID_DEVICE
CUPTI_ERROR_INVALID_EVENT_DOMAIN_ID
CUPTI_ERROR_INVALID_PARAMETER if arraySizeBytes or eventArray are

NULL

CUptiResult cuptiEventDomainGetAttribute (CUdevice
device, CUpti_EventDomainID eventDomain,
CUpti_EventDomainAttribute attrib, size_t ∗ valueSize, void ∗
value)

Returns an event domain attribute in ∗value. The size of the value buffer is given by
∗valueSize. The value returned in ∗valueSize contains the number of bytes returned in
value.

If the attribute value is a c-string that is longer than ∗valueSize, then only the first
∗valueSize characters will be returned and there will be no terminating null byte.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 38

Parameters:

device The CUDA device

eventDomain ID of the event domain

attrib The event domain attribute to read

valueSize The size of the value buffer in bytes, and returns the number of bytes
written to value

value Returns the attribute’s value
Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_DEVICE

CUPTI_ERROR_INVALID_EVENT_DOMAIN_ID

CUPTI_ERROR_INVALID_PARAMETER if valueSize or value is NULL, or if
attrib is not an event domain attribute

CUPTI_ERROR_PARAMETER_SIZE_NOT_SUFFICIENT For non-c-string
attribute values, indicates that the value buffer is too small to hold the attribute
value.

CUptiResult cuptiEventDomainGetNumEvents (CUdevice device,
CUpti_EventDomainID eventDomain, uint32_t ∗ numevents)

Returns the number of events in numevents for a domain.
Parameters:

device The CUDA device

eventDomain ID of the event domain

numevents Returns the number of events in the domain
Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_DEVICE

CUPTI_ERROR_INVALID_EVENT_DOMAIN_ID

CUPTI_ERROR_INVALID_PARAMETER if numevents is NULL

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 39

CUptiResult cuptiEventGetAttribute (CUdevice device,
CUpti_EventID event, CUpti_EventAttribute attrib, size_t ∗
valueSize, void ∗ value)

Returns an event attribute in ∗value. The size of the value buffer is given by ∗valueSize.
The value returned in ∗valueSize contains the number of bytes returned in value.

If the attribute value is a c-string that is longer than ∗valueSize, then only the first
∗valueSize characters will be returned and there will be no terminating null byte.

Parameters:

device The CUDA device

event ID of the event

attrib The event attribute to read

valueSize The size of the value buffer in bytes, and returns the number of bytes
written to value

value Returns the attribute’s value
Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_DEVICE

CUPTI_ERROR_INVALID_EVENT_ID

CUPTI_ERROR_INVALID_PARAMETER if valueSize or value is NULL, or if
attrib is not an event attribute

CUPTI_ERROR_PARAMETER_SIZE_NOT_SUFFICIENT For non-c-string
attribute values, indicates that the value buffer is too small to hold the attribute
value.

CUptiResult cuptiEventGetIdFromName (CUdevice device, const
char ∗ eventName, CUpti_EventID ∗ event)

Finds a returns an event by name in ∗event. ∗

Parameters:

device The CUDA device

eventName The name of the event to find

event Returns the ID of the found event or undefined if unable to find the event
Return values:

CUPTI_SUCCESS

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 40

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_DEVICE

CUPTI_ERROR_INVALID_EVENT_NAME if unable to find an event with name
eventName. In this case ∗event is undefined

CUPTI_ERROR_INVALID_PARAMETER if eventName or event are NULL

CUptiResult cuptiEventGroupAddEvent (CUpti_EventGroup
eventGroup, CUpti_EventID event)

Add an event to an event group. The event add can fail for a number of reasons:

I The event group is enabled

I The event does not belong to the same event domain as the events that are already
in the event group

I Device limitations on the events that can belong to the same group

I The event group is full

Parameters:

eventGroup The event group

event The event to add to the group

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_EVENT_ID

CUPTI_ERROR_OUT_OF_MEMORY

CUPTI_ERROR_INVALID_OPERATION if eventGroup is enabled

CUPTI_ERROR_NOT_COMPATIBLE if event belongs to a different event
domain than the events already in eventGroup, or if a device limitation prevents
event from being collected at the same time as the events already in eventGroup

CUPTI_ERROR_MAX_LIMIT_REACHED if eventGroup is full

CUPTI_ERROR_INVALID_PARAMETER if eventGroup is NULL

CUptiResult cuptiEventGroupCreate (CUcontext context,
CUpti_EventGroup ∗ eventGroup, uint32_t flags)

Creates a new event group for context and returns the new group in ∗eventGroup.

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 41

Note:

flags are reserved for future use and should be set to zero.

Parameters:

context The context for the event group
eventGroup Returns the new event group
flags Reserved - must be zero

Return values:

CUPTI_SUCCESS
CUPTI_ERROR_NOT_INITIALIZED
CUPTI_ERROR_INVALID_CONTEXT
CUPTI_ERROR_OUT_OF_MEMORY
CUPTI_ERROR_INVALID_PARAMETER if eventGroup is NULL

CUptiResult cuptiEventGroupDestroy (CUpti_EventGroup
eventGroup)

Destroy an eventGroup and free its resources. An event group cannot be destroyed if it is
enabled.
Parameters:

eventGroup The event group to destroy

Return values:

CUPTI_SUCCESS
CUPTI_ERROR_NOT_INITIALIZED
CUPTI_ERROR_INVALID_OPERATION if the event group is enabled
CUPTI_ERROR_INVALID_PARAMETER if eventGroup is NULL

CUptiResult cuptiEventGroupDisable (CUpti_EventGroup
eventGroup)

Disable an event group. Disabling an event group stops collection of events contained in
the group.

Parameters:

eventGroup The event group

Return values:

CUPTI_SUCCESS

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 42

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_HARDWARE

CUPTI_ERROR_INVALID_PARAMETER if eventGroup is NULL

CUptiResult cuptiEventGroupEnable (CUpti_EventGroup
eventGroup)

Enable an event group. Enabling an event group zeros the value of all the events in the
group and then starts collection of those events.

Parameters:

eventGroup The event group

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_HARDWARE

CUPTI_ERROR_NOT_READY if eventGroup does not contain any events

CUPTI_ERROR_NOT_COMPATIBLE if eventGroup cannot be enabled due to
other already enabled event groups

CUPTI_ERROR_INVALID_PARAMETER if eventGroup is NULL

CUptiResult cuptiEventGroupGetAttribute (CUpti_EventGroup
eventGroup, CUpti_EventGroupAttribute attrib, uint64_t ∗
value)

Read an event group attribute and return it in ∗value.

Parameters:

eventGroup The event group

attrib The attribute to read

value Returns the value of the attribute
Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_PARAMETER if attrib is not an event group
attribute, or if value is NULL

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 43

CUptiResult cuptiEventGroupReadAllEvents (CUpti_EventGroup
eventGroup, CUpti_ReadEventFlags flags, size_t ∗
bufferSizeBytes, uint64_t ∗ counterDataBuffer, size_t ∗
arraySizeBytes, CUpti_EventID ∗ eventArray, size_t ∗
numCountersRead)

Read the values for all the events in an event group. The counter values are returned in
the counterData buffer. bufferSizeBytes indicates the size of the counterData buffer.
The buffer must be at least (sizeof(uint64) ∗ number of events in group) if
CUPTI_EVENT_GROUP_ATTR_PROFILE_ALL_DOMAIN_INSTANCES is not set
on the domain containing the events. The buffer must be at least (sizeof(uint64) ∗ number
of domain instances ∗ number of events in group) if
CUPTI_EVENT_GROUP_ATTR_PROFILE_ALL_DOMAIN_INSTANCES is set on
the domain.

The data format returned in counterData is:

I domain instance 0: event0 event1 ... eventN

I domain instance 1: event0 event1 ... eventN

I ...

I domain instance M: event0 event1 ... eventN

The event order in counterData is returned in eventArray. The size of eventArray is
specified in arraySizeBytes. The size should be at least (sizeof(CUpti_EventID) ∗
number of events in group).

The only allowed value for flags is CUPTI_EVENT_READ_FLAG_NONE.

Reading events from a disabled event group is not allowed.

Parameters:

eventGroup The event group
flags Flags controlling the reading mode
bufferSizeBytes The size of counterData in bytes, and returns the number of bytes

written to counterData

counterData Returns the event counter values
arraySizeBytes The size of eventArray in bytes, and returns the number of bytes

written to eventArray

eventArray Returns the IDs of the events in the domain
numCountersRead Returns the number of event counts returned in

Return values:

CUPTI_SUCCESS
CUPTI_ERROR_NOT_INITIALIZED

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 44

CUPTI_ERROR_HARDWARE

CUPTI_ERROR_INVALID_OPERATION if eventGroup is disabled

CUPTI_ERROR_INVALID_PARAMETER if eventGroup, bufferSizeBytes,
counterData, arraySizeBytes, eventArray or numCountersRead is NULL

CUptiResult cuptiEventGroupReadEvent (CUpti_EventGroup
eventGroup, CUpti_ReadEventFlags flags, CUpti_EventID
event, size_t ∗ bufferSizeBytes, uint64_t ∗ counterData)

Read the value for an event in an event group. The counter value is returned in the
counterData buffer. bufferSizeBytes indicates the size of the counterData buffer. The
buffer must be at least sizeof(uint64) if
CUPTI_EVENT_GROUP_ATTR_PROFILE_ALL_DOMAIN_INSTANCES is not set
on the domain containing the event. The buffer must be at least (sizeof(uint64) ∗ number
of domain instances) if
CUPTI_EVENT_GROUP_ATTR_PROFILE_ALL_DOMAIN_INSTANCES is set on
the domain.

The only allowed value for flags is CUPTI_EVENT_READ_FLAG_NONE.

Reading an event from a disabled event group is not allowed.

Parameters:

eventGroup The event group

flags Flags controlling the reading mode

event The event to read

bufferSizeBytes The size of counterData in bytes, and returns the number of bytes
written to counterData

counterData Returns the event counter values
Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_EVENT_ID

CUPTI_ERROR_HARDWARE

CUPTI_ERROR_INVALID_OPERATION if eventGroup is disabled

CUPTI_ERROR_INVALID_PARAMETER if eventGroup, bufferSizeBytes or
counterData is NULL

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 45

CUptiResult cuptiEventGroupRemoveAllEvents
(CUpti_EventGroup eventGroup)

Remove all events from an event group. Events cannot be removed if the event group is
enabled.
Parameters:

eventGroup The event group

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_OPERATION if eventGroup is enabled

CUPTI_ERROR_INVALID_PARAMETER if eventGroup is NULL

CUptiResult cuptiEventGroupRemoveEvent (CUpti_EventGroup
eventGroup, CUpti_EventID event)

Remove event from the an event group. The event cannot be removed if the event group
is enabled.
Parameters:

eventGroup The event group

event The event to remove from the group

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_EVENT_ID

CUPTI_ERROR_INVALID_OPERATION if eventGroup is enabled

CUPTI_ERROR_INVALID_PARAMETER if eventGroup is NULL

CUptiResult cuptiEventGroupResetAllEvents (CUpti_EventGroup
eventGroup)

Zero all the event counts in an event group.

Parameters:

eventGroup The event group

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 46

Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_HARDWARE

CUPTI_ERROR_INVALID_PARAMETER if eventGroup is NULL

CUptiResult cuptiEventGroupSetAttribute (CUpti_EventGroup
eventGroup, CUpti_EventGroupAttribute attrib, uint64_t value)

Write an event group attribute.

Parameters:

eventGroup The event group

attrib The attribute to write

value The attribute value to write
Return values:

CUPTI_SUCCESS

CUPTI_ERROR_NOT_INITIALIZED

CUPTI_ERROR_INVALID_PARAMETER if attrib is not an event group
attribute, or if attrib is not a writable attribute

CUDA Tools SDK CUPTI User’s Guide DA-05679-001_v01 | 47

www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S.
and other countries. Other company and product names may be trademarks of the respective companies with
which they are associated.

Copyright

© 2011 NVIDIA Corporation. All rights reserved.

	CUPTI
	CUPTI Callback API
	CUPTI Event API
	Collecting Kernel Execution Events
	Sampling Events
	Interpreting Event Values
	SM Event Type
	TPC Event Type
	FB Event Type

	Event Reference - Compute Capability 1.0 to 1.3
	Event Reference - Compute Capability 2.x

	Samples

	CUPTI Reference
	CUPTI Version
	Define Documentation
	CUPTI_API_VERSION

	Function Documentation
	cuptiGetVersion

	CUPTI Result Codes
	Enumeration Type Documentation
	CUptiResult

	Function Documentation
	cuptiGetResultString

	CUPTI Callback API
	Typedef Documentation
	CUpti_CallbackFunc
	CUpti_CallbackId

	Enumeration Type Documentation
	CUpti_ApiCallbackSite
	CUpti_CallbackDomain

	Function Documentation
	cuptiEnableAllDomains
	cuptiEnableCallback
	cuptiEnableDomain
	cuptiGetCallbackState
	cuptiSubscribe
	cuptiSupportedDomains
	cuptiUnsubscribe

	CUpti_CallbackData Reference
	Detailed Description
	Field Documentation
	callbackSite
	context
	contextUid
	correlationData
	functionName
	functionParams
	functionReturnValue
	symbolName

	CUPTI Event API
	Typedef Documentation
	CUpti_EventDomainID
	CUpti_EventGroup
	CUpti_EventID

	Enumeration Type Documentation
	CUpti_DeviceAttribute
	CUpti_EventAttribute
	CUpti_EventDomainAttribute
	CUpti_EventGroupAttribute
	CUpti_ReadEventFlags

	Function Documentation
	cuptiDeviceEnumEventDomains
	cuptiDeviceGetAttribute
	cuptiDeviceGetNumEventDomains
	cuptiDeviceGetTimestamp
	cuptiEventDomainEnumEvents
	cuptiEventDomainGetAttribute
	cuptiEventDomainGetNumEvents
	cuptiEventGetAttribute
	cuptiEventGetIdFromName
	cuptiEventGroupAddEvent
	cuptiEventGroupCreate
	cuptiEventGroupDestroy
	cuptiEventGroupDisable
	cuptiEventGroupEnable
	cuptiEventGroupGetAttribute
	cuptiEventGroupReadAllEvents
	cuptiEventGroupReadEvent
	cuptiEventGroupRemoveAllEvents
	cuptiEventGroupRemoveEvent
	cuptiEventGroupResetAllEvents
	cuptiEventGroupSetAttribute

