Library Coq.Numbers.NatInt.NZAxioms


Initial Author : Evgeny Makarov, INRIA, 2007


Require Export Equalities Orders NumPrelude GenericMinMax.

Axiomatization of a domain with zero, successor, predecessor, and a bi-directional induction principle. We require P (S n) = n but not the other way around, since this domain is meant to be either N or Z. In fact it can be a few other things, for instance Z/nZ (See file NZDomain for a study of that).

Module Type ZeroSuccPred (Import T:Typ).
 Parameter Inline zero : t.
 Parameters Inline succ pred : t -> t.
End ZeroSuccPred.

Module Type ZeroSuccPredNotation (T:Typ)(Import NZ:ZeroSuccPred T).
 Notation "0" := zero.
 Notation S := succ.
 Notation P := pred.
 Notation "1" := (S 0).
 Notation "2" := (S 1).
End ZeroSuccPredNotation.

Module Type ZeroSuccPred' (T:Typ) :=
 ZeroSuccPred T <+ ZeroSuccPredNotation T.

Module Type IsNZDomain (Import E:Eq')(Import NZ:ZeroSuccPred' E).
 Declare Instance succ_wd : Proper (eq ==> eq) S.
 Declare Instance pred_wd : Proper (eq ==> eq) P.
 Axiom pred_succ : forall n, P (S n) == n.
 Axiom bi_induction :
  forall A : t -> Prop, Proper (eq==>iff) A ->
    A 0 -> (forall n, A n <-> A (S n)) -> forall n, A n.
End IsNZDomain.

Module Type NZDomainSig := EqualityType <+ ZeroSuccPred <+ IsNZDomain.
Module Type NZDomainSig' := EqualityType' <+ ZeroSuccPred' <+ IsNZDomain.

Axiomatization of basic operations : + - *

Module Type AddSubMul (Import T:Typ).
 Parameters Inline add sub mul : t -> t -> t.
End AddSubMul.

Module Type AddSubMulNotation (T:Typ)(Import NZ:AddSubMul T).
 Notation "x + y" := (add x y).
 Notation "x - y" := (sub x y).
 Notation "x * y" := (mul x y).
End AddSubMulNotation.

Module Type AddSubMul' (T:Typ) := AddSubMul T <+ AddSubMulNotation T.

Module Type IsAddSubMul (Import E:NZDomainSig')(Import NZ:AddSubMul' E).
 Declare Instance add_wd : Proper (eq ==> eq ==> eq) add.
 Declare Instance sub_wd : Proper (eq ==> eq ==> eq) sub.
 Declare Instance mul_wd : Proper (eq ==> eq ==> eq) mul.
 Axiom add_0_l : forall n, 0 + n == n.
 Axiom add_succ_l : forall n m, (S n) + m == S (n + m).
 Axiom sub_0_r : forall n, n - 0 == n.
 Axiom sub_succ_r : forall n m, n - (S m) == P (n - m).
 Axiom mul_0_l : forall n, 0 * n == 0.
 Axiom mul_succ_l : forall n m, S n * m == n * m + m.
End IsAddSubMul.

Module Type NZBasicFunsSig := NZDomainSig <+ AddSubMul <+ IsAddSubMul.
Module Type NZBasicFunsSig' := NZDomainSig' <+ AddSubMul' <+IsAddSubMul.

Old name for the same interface:

Module Type NZAxiomsSig := NZBasicFunsSig.
Module Type NZAxiomsSig' := NZBasicFunsSig'.

Axiomatization of order

Module Type NZOrd := NZDomainSig <+ HasLt <+ HasLe.
Module Type NZOrd' := NZDomainSig' <+ HasLt <+ HasLe <+
                      LtNotation <+ LeNotation <+ LtLeNotation.

Module Type IsNZOrd (Import NZ : NZOrd').
 Declare Instance lt_wd : Proper (eq ==> eq ==> iff) lt.
 Axiom lt_eq_cases : forall n m, n <= m <-> n < m \/ n == m.
 Axiom lt_irrefl : forall n, ~ (n < n).
 Axiom lt_succ_r : forall n m, n < S m <-> n <= m.
End IsNZOrd.

NB: the compatibility of le can be proved later from lt_wd and lt_eq_cases

Module Type NZOrdSig := NZOrd <+ IsNZOrd.
Module Type NZOrdSig' := NZOrd' <+ IsNZOrd.

Everything together :

Module Type NZOrdAxiomsSig <: NZBasicFunsSig <: NZOrdSig
 := NZOrdSig <+ AddSubMul <+ IsAddSubMul <+ HasMinMax.
Module Type NZOrdAxiomsSig' <: NZOrdAxiomsSig
 := NZOrdSig' <+ AddSubMul' <+ IsAddSubMul <+ HasMinMax.

Same, plus a comparison function.

Module Type NZDecOrdSig := NZOrdSig <+ HasCompare.
Module Type NZDecOrdSig' := NZOrdSig' <+ HasCompare.

Module Type NZDecOrdAxiomsSig := NZOrdAxiomsSig <+ HasCompare.
Module Type NZDecOrdAxiomsSig' := NZOrdAxiomsSig' <+ HasCompare.