Z (projection)
zero [in Coq.nsatz.Nsatz]
znz_1 [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_sub_carry [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_square_c [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_pred_c [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_div21 [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_opp_c [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_div_gt [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_add_c [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_add [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_gcd [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_Bm1 [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_add_carry_c [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_pos_mod [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_gcd_gt [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_opp_carry [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_mul_c [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_sqrt2 [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_sqrt [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_sub_c [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_succ [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_zdigits [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_opp [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_sub [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_succ_c [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_digits [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_mul [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_of_pos [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_add_carry [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_is_even [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_head0 [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_sub_carry_c [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_0 [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_div [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_add_mul_div [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_to_Z [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_compare [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_tail0 [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_pred [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_mod_gt [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_mod [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]
znz_eq0 [in Coq.Numbers.Cyclic.Abstract.CyclicAxioms]