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Chapter 1

Introduction

In this tutorial we give a short introduction to the usage heé thain functionalities of
NuSMV. In Chapter 2 [Examples], page 3 we describe the inpguage of NNSMV by
presenting some examples oSMV models. Chapter 3 [Simulation], page 8 shows how
the user can get familiar with the behavior of @8IMV model by exploring its possible
executions. Chapter 4 [CTL Model Checking], page 13 and @hap[LTL Model Check-
ing], page 17 give an overview of BDD-based model checkirtglexChapter 6 [Bounded
Model Checking], page 20 presents SAT-based model cheakiNgSMV.



Chapter 2

Examples

In this section we describe the input language ofS\MV by presenting some examples
of NUSMV models. A complete description of thellSMV language can be found in the
NuSMV 2.5 User Manual. Also, all mentioned example files cafdund in the distributed
archive of NUSMV 2.5, or can be individually downloaded frttme NUSMV web pages,
at the URL<http://nusmv.fbk.eu/examples/examples.htm|>

The input language of NSMV is designed to allow for the description of Finite State
Machines (FSMs from now on) which range from completely $yonous to completely
asynchronous, and from the detailed to the abstract. Onspegify a system as a syn-
chronous Mealy machine, or as an asynchronous network afgterministic processes.
The language provides for modular hierarchical descmgsticand for the definition of
reusable components. Since it is intended to describe Btate machines, the only data
types in the language are finite ones — booleans, scalarsxaudfirays. Static data types
can also be constructed.

The primary purpose of the MV input is to describe the transition relation of the
FSM; this relation describes the valid evolutions of theestef the FSM. In general, any
propositional expression in the propositional calculus lba used to define the transition
relation. This provides a great deal of flexibility, and a¢ #ame time a certain danger of
inconsistency. For example, the presence of a logical adidion can result in a deadlock
— a state or states with no successor. This can make somécgtéanis vacuously true, and
makes the description unimplementable. While the modetkihg process can be used to
check for deadlocks, it is best to avoid the problem wheniplesy using a restricted
description style. The NSMV system supports this by providing a parallel-assignmen
syntax. The semantics of assignment in®MV is similar to that of single assignment
data flow language. By checking programs for multiple pataksignments to the same
variable, circular assignments, and type errors, thepnéger insures that a program us-
ing only the assignment mechanism is implementable. Caresgly, this fragment of the
language can be viewed as a description language, or a pnogrg language.

2.1 Synchronous Systems

2.1.1 Single Process Example

Consider the following simple program in thesSMV language:

MODULE main
VAR
request : boolean;
state :  {ready, busy };



ASSIGN
init(state) := ready;
next(state) := case
state = ready & request = TRUE : busy;
TRUE : {ready, busy };
esac;

The space of states of the FSM is determined by the declasatibthe state variables
(inthe above examplequest andstate ). The variableequest is declared to be of
(predefined) typdoolean . This means that it can assume the (boolean) veliddsSE
and TRUE The variablestate is a scalar variable, which can take the symbolic values
ready or busy . The following assignment sets the initial value of the @bké state
to ready . The initial value ofrequest is completely unspecified, i.e. it can be either
FALSE or TRUE The transition relation of the FSM is expressed by definhrgtalue
of variables in the next state (i.e. after each transitignjen the value of variables in
the current states (i.e. before the transition). Thee segment sets the next value of
the variablestate to the valuebusy (after the colon) if its current value ready and
request is TRUE Otherwise (th& RUEbefore the colon) the next value fstate can
be any in the sefready, busy }. The variableequest is not assigned. This means
that there are no constraints on its values, and thus it camasany valuerequest is
thus an unconstrained input to the system.

2.1.2 Binary Counter

The following program illustrates the definition of reusabiodules and expressions. It is
a model of a three bit binary counter circuit. The order of medlefinitions in the input
file is not relevant.

MODULE counter_cell(carry_in)
VAR
value : boolean;
ASSIGN
init(value) := FALSE;
next(value) := value xor carry_in;
DEFINE
carry_out := value & carry_in;
MODULE main
VAR
bit0 : counter_cell(TRUE);
bitl : counter_cell(bitO.carry_out);
bit2 : counter_cell(bitl.carry_out);

The FSM is defined by instantiating three times the module tgqunter _cell in
the modulamain , withthe namebit0 ,bitl andbit2 respectively. Theounter _cell
module has one formal parametarry _in . Inthe instanc®itO , this parameter is given
the actual valugdRUE In the instancéitl , carry _in is given the value of the expres-
sionbit0.carry _out . This expression is evaluated in the context ofritteen module.
However, an expression of the form.b’ denotes component” of module ‘a’, just as
if the module &’ were a data structure in a standard programming languagacé] the
carry _in of modulebitl isthecarry _out of modulebitO

The keyword ‘DEFINE’ is used to assign the expressialue & carry _in tothe
symbolcarry _out . A definition can be thought of as a variable with value (fimally)
depending on the current values of other variables. The sdfeet could have been ob-
tained as follows (notice that therrent value of the variable is assigned, rather than the
next value.):



VAR
carry_out : boolean;
ASSIGN
carry_out := value & carry_in;

Defined symbols do not require introducing a new variablé,lzance do not increase the
state space of the FSM. On the other hand, it is not possilalesign to a defined symbol a
value non-deterministically. Another difference betwelefined symbols and variables is
that while the type of variables is declared a priori, for digifins this is not the case.

2.2 Asynchronous Systems

I mportant!

Since NUSMV version 2.5.0 processes agleprecated. In future versions of NSMV
processes may be no longer supported, and only synchroystess will be supported hy
the input language. Modeling of asynchronous systems aileho be resolved at higher
level.

The previous examples describe synchronous systems, whei@ssignments state-
ments are taken into account in parallel and simultaneouslySMV allows to model
asynchronous systems. It is possible to define a collectigrarallel processes, whose
actions are interleaved, following an asynchronous motiebocurrency. This is useful
for describing communication protocols, or asynchronarcsiits, or other systems whose
actions are not synchronized (including synchronous tsanith more than one clock
region).

2.2.1 Inverter Ring

The following program represents a ring of three asynchusiiioverting gates.

MODULE inverter(input)

VAR
output : boolean;
ASSIGN
init(output) := FALSE;
next(output) := linput;
MODULE main
VAR

gatel : process inverter(gate3.output);
gate2 : process inverter(gatel.output);
gate3 : process inverter(gate2.output);

Among all the modules instantiated with theocess keyword, one is nondeterministi-
cally chosen, and the assignment statements declaredtipribeess are executed in par-
allel. It is implicit that if a given variable is not assignég the process, then its value
remains unchanged. Because the choice of the next prooessdote is non-deterministic,
this program models the ring of inverters independentlyhefdpeed of the gates.

We remark that the system is not forced to eventually chogseea process to execute.
As a consequence the output of a given gate may remain conrggardless of its input. In
order to force a given process to execute infinitely oftencareuse a fairness constraint. A
fairness constraint restricts the attention of the modetkhr to only those execution paths
along which a given formula is true infinitely often. Each @ees has a special variable
calledrunning which isTRUEIf and only if that process is currently executing.



By adding the declaration:

FAIRNESS
running

to the moduleénverter , we can effectively force every instanceinterter  to exe-
cute infinitely often.

An alternative to using processes to model an asynchronoustds to allow all gates
to execute simultaneously, but to allow each gate to choosedeterministically to re-
evaluate its output or to keep the same output value. Suchdelned the inverter ring
would look like the following:

MODULE inverter(input)
VAR
output : boolean;
ASSIGN
init(output) := FALSE;
next(output) := (linput) union output;
MODULE main
VAR
gatel : inverter(gate3.output);
gate2 : inverter(gatel.output);
gate3 : inverter(gate2.output);

Theunion operator (set union) coerces its arguments to singleterasatecessary. Thus,
the nextoutput of each gate can be either its currenttput , or the negation of its
currentinput — each gate can choose non-deterministically whether &ydelnot. As
a result, the number of possible transitions from a givetestan be a&™, wheren is the
number of gates. This sometimes (but not always) makes ieragpensive to represent
the transition relation. We remark that in this case we caforce the inverters to be
effectively active infinitely often using a fairness deal@on. In fact, a valid scenario for
the synchronous model is the one where all the invertersdigeand assign to the next
output the current value obutput

2.2.2 Mutual Exclusion

The following program is another example of asynchronousleho It uses a variable
semaphore to implement mutual exclusion between two asgnols processes. Each
process has four stateigile , entering , critical andexiting . Theentering
state indicates that the process wants to enter its crigédn. If the variablsemaphore

is FALSE, it goes to thecritical state, and setsemaphore to TRUE On exiting its
critical region, the process setesmaphore to FALSEagain.

MODULE main
VAR
semaphore : boolean;
procl . process user(semaphore);
proc2 . process user(semaphore);
ASSIGN

init(semaphore) := FALSE;
MODULE user(semaphore)
VAR
state :  {idle, entering, critical, exiting ;



ASSIGN
init(state) = idle;

next(state) :=
case
state = idle : {idle, entering i
state = entering & !semaphore : critical;
state = critical : {critical, exiting i
state = exiting . idle;
TRUE . state;
esac;
next(semaphore) :=
case

state = entering : TRUE;

state = exiting : FALSE;
TRUE : semaphore;
esac;
FAIRNESS
running

2.3 Direct Specification

NuSMYV allows to specify the FSM directly in terms of propositad formulas. The set of
possible initial states is specified as a formulain the euistate variables. A state is initial
if it satisfies the formula. The transition relation is ditgcspecified as a propositional
formula in terms of theurrent andnext values of the state variables. Any current state/next
state pair is in the transition relation if and only if it sdies the formula.

These two functions are accomplished by tidlT ' and ‘TRANS keywords. As an
example, here is a description of the three inverter ringgisnly TRANSandINIT :

MODULE main

VAR
gatel : inverter(gate3.output);
gate2 : inverter(gatel.output);
gate3 : inverter(gate2.output);

MODULE inverter(input)

VAR
output : boolean;
INIT
output = FALSE
TRANS
next(output) = linput | next(output) = output

According to theTRANSdeclaration, for each inverter, the next value of thuput
is equal either to the negation of thrgput , or to the current value of theutput . Thus,
in effect, each gate can choose non-deterministically évadr not to delay.

Using TRANSand INIT it is possible to specify inadmissible FSMs, where the set
of initial states is empty or the transition relation is notal. This may result in logical
absurdities.



Chapter 3

Simulation

Simulation offers to the user the possibility of explorimg tpossible executionsgréces
from now on) of a USMV model. In this way, the user can get familiar with a model
and can acquire confidence with its correctness before toialaerification of properties.
This section describes the basic features of simulationisMV. Further details on the
simulation commands can be found in the NuSMV 2.5 User Manual

3.1 Trace Strategies

In order to achieve maximum flexibility and degrees of freeda a simulation session,
NUSMV permits three different trace generation strategiestemhinistic, random and
interactive. Each of them corresponds to a different wayatess picked from a set of
possible choices. In deterministic simulation mode the §itate of a set (whatever it is)
is chosen, while in the random one the choice is performedet@nministically. In these
two first modes traces are automatically generated b MV: the user obtains the whole
of the trace in a time without control over the generatioalftéexcept for the simulation
mode and the number of states entered via command line).

In the third simulation mode, the user has a complete contrd traces generation by
interactively building the trace. During an interactivesiation session, the system stops
at every step, showing a list of possible future states: #ez is requested to choose one
of the items. This feature is particularly useful when on@tsdo inspect some particular
reactions of the model to be checked. When the number ofldedsiture states exceeds
an internal limit, rather than “confusing” the user with soate from a high number of
possible evolutions, the system asks the user to “guide’itmelation via the insertion
of some further constraints over the possible future stafd® system will continue to
ask for constraints insertion until the number of futurdestawill be under the predefined
threshold. The constraints entered during this phase atevadated (in a logical product)
in a single big constraint. This constraint is used only far ¢urrent step of the simulation
and is discarded before the next step. The system checkspinessions entered by the
user and does not accept them whenever an inconsisteneg.a@sses of inconsistency
(i.e. empty set of states) may be caused by:

e the entered expressions (i@.& ~ a);
e the result of the entered expressions conjoined with ptesvéacumulated ones;

¢ the result of accumulated constraints conjoined with thespossible future states.



3.2 Interactive Mode

A typical execution sequence of a simulation session coeldsfollows. Suppose we use
the model described below.

MODULE main
VAR
request : boolean;
state :  {ready,busy };
ASSIGN

init(state) := ready;
next(state) := case
state = ready & request : busy;
TRUE . {ready,busy };
esac;

As a preliminary step, this model has to read into theSWV system. This can be
obtained by executing the following commands (we assumtehieanodel is saved in file
short.smv ):1!

system _prompt> NuSMWV -int short.smv
NuSMV>go
NuSMv>

3.2.1 Choosing an Initial State

In order to start the simulation, an initial state has to beselm. This can be done in three
ways:

e by default, the simulator uses tharrent state as a starting point of every new sim-
ulation; this behavior if possible only if a current statedisfined (e.g., if we are
exploring a trace);

e ifcommandyoto _state is used, the user can select any state of an already existent
trace as theurrent state;

e if pick _state is used, then the user can choose the starting state of thiasiom
among the initial states of the model; this command has toskd when aurrent
state does not exist yet (that is when the model has not yet beerepsed or when
the system has been reset).

At this point of the exampleurrent state does not exist, and there is no trace currently
stored in the system. Therefore, an item from the set ofirstiates has to be picked using
commandick _state . A simulation session can be started now, usingsihaulate
command. Consider for instance the following simulatiossgn:

system _prompt> NuSMWV -int short.snv
NuSMV>go

NuSMV>pi ck state -r

NuSMV>print current state -v

Current state is 1.1

request = FALSE

state = ready

1We assume that everyNsMV command is followed by &RET> keystroke. In the following examples,
NUSMYV commands are writtehi ke t hi s to distinguish them from system output messages.



NuSMV>si nul ate -r 3
Fkkkkkkkk Starting Simulation From State 1.1 kkkkkkkkk
NuSMV>showtraces -t
There is 1 trace currently available.
NuSMV>showtraces -v
PHHHHHAH A Trace number: 1 #HHEHERHHHHHHE #H#
Trace Description: Simulation Trace
Trace Type: Simulation
-> State: 1.1 <-
request = FALSE
state = ready
-> State: 1.2 <-
request = TRUE
state = busy
-> State: 1.3 <-
request = TRUE
state = ready
-> State: 1.4 <-
request = TRUE
state = busy

Commandpick _state -r requires to pick the starting state of the simulatiandomly
from the set of initial states of the model. Commasntiulate -r 3 asks to build a three-
steps simulation by picking randomly the next states of tapss As shown by command
show traces -v, the resulting trace contains 4 states (the initial one, thedthree ones
that have been added by the random simulation). We remarkhtbaenerated traces are
numbered: every trace is identified by an integer numberewndhiery state belonging to
a trace is identified by dot notation: for example statd.3 is the third state of the first
generated trace.

3.2.2 Starting a New Simulation

Now the user can start a new simulation by choosing a newirgjastate. In the next
example, for instance, the user extends trace 1 by first ahgpasatel.4 as thecurrent
state and by then running a random simulation of lengith

NuSMV>goto.state 1.4
The starting state for new trace is:
-> State 2.4 <-
request = TRUE
state = busy
NuSMV>si mul ate -r 3
Fkkkkkok Simulation Starting From State 2.4 ek kkokk
NuSMV>showtraces 2
TR A Trace number: 2 #HHHHHEHH
Trace Description: Simulation Trace
Trace Type: Simulation
-> State: 2.1 <-
request = TRUE
state = ready
-> State: 2.2 <-
state = busy
-> State: 2.3 <-
request = FALSE
-> State: 2.4 <-
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request = TRUE
-> State: 2.5 <-

request = FALSE
-> State: 2.6 <-

state = ready
-> State: 2.7 <-
NuSMV>

As the reader can see from the previous example, the newigratered as trac2. The
user is also able to interactively choose the states of #lte tie wants to build: an example
of an interactive simulation is shown below:

NuSMV>pi ck_state -i

FokkdokkkdokkkFkkk AVAILABLE STATES sxkkxskkxskrx

State
0)

request = TRUE
state = ready

State
1
request = FALSE
state = ready
Choose a state from the above (0-1): 1 <RET>

Chosen state is: 1
NuSMV>sinmul ate -i 1

Fokkkkkkk Simulation Starting From State 3.1 Fkkkkkkk

kkkkkkkhkhkkhkk AVAILABLE FUTURE STATES ###kxxxxksskx
State

0)

request = TRUE
state = ready

State
1)
request = TRUE
state = busy
State
2)
request = FALSE
state = ready
State
3)

request = FALSE
state = busy

11



Choose a state from the above (0-3): 0 <RET>

Chosen state is: 0
NuSMV>showtraces 3
BHAHHHHTHTHHARHHHIHHT Trace number: 3 #HHHARTHHHHHHHHHHTT
Trace Description: Simulation Trace
Trace Type: Simulation
-> State: 3.1 <-
request = FALSE
state = ready
-> State: 3.2 <-
request = TRUE

3.2.3 Specifying Constraints

The user can also specify some constraints to restrict th&f séates from which the sim-
ulator will pick out. Constraints can be set for both fiiek _state command and the
simulate command using optiorc . For example the following command picks an
initial state by defining a simple constraint:

NuSMV>pi ck_ state -c "request = TRUE" -i

FokkdokkkdokkkFkkk AVAILABLE STATES sxkkxkkkxskkksk

State

0)

request = TRUE
state = ready

There's only one future state. Press Return to Proceed. <RET >

Chosen state is: 0
NuSMV>qui t
system _prompt>

Note how the set of possible states to choose has beingctedt(in this case there is
only one future state, so the system will automatically gictaiting for the user to press
the<RET>key). We remark that, in the case of commaidulate , the constraints de-
fined using optionc are “global” for the actual trace to be generated, in theesémat they
are always included in every step of the simulation. Theyhamce complementary to the
constraints entered with thgck _state command, or during an interactive simulation
session when the number of future states to be displayed tsgh, since these are “local”
only to a single simulation step and are “forgotten” in thetrane.
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Chapter 4

CTL Model Checking

The main purpose of a model checker is to verify that a modisifis a set of desired prop-
erties specified by the user. INU$MV, the specifications to be checked can be expressed
in two different temporal logics: the Computation Tree Lo@TL, and the Linear Tem-
poral Logic LTL extended with Past Operators. CTL and LTLdfieations are evaluated

by NUSMYV in order to determine their truth or falsity in the FSM. @tha specification

is discovered to be false, WMV constructs and prints a counterexample, i.e. a trace
of the FSM that falsifies the property. In this section we wlidiscribe model checking

of specifications expressed in CTL, while the next sectioncamesider the case of LTL
specifications.

4.1 Computation Tree Logic

CTL is abranching-time logic: its formulas allow for specifying properties thakéainto
account the non-deterministic, branching evolution of MFBlore precisely, the evolution
of a FSM from a given state can be described as an infinite wiere the nodes are the
states of the FSM and the branching in due to the non-detesimin the transition relation.
The paths in the tree that start in a given state are the pesstbrnative evolutions of the
FSM from that state. In CTL one can express properties thaildhold forall the paths
that start in a state, as well as for properties that shoufdijbet for some of the paths.

Consider for instance CTL formulaF p. It expresses the condition that, fall the
paths Q) stating from a stategventually in the future (F) conditionp must hold. That is,
all the possible evolutions of the system will eventuallsigie a state satisfying condition
p. CTL formulaEF p, on the other hand, requires than thexists some path ) that
eventually in the future satisfigs

Similarly, formulaAG prequires that conditiop is always, omglobally, true in all the
states of all the possible paths, while form&@ prequires that there is some path along
which conditionp is continuously true.

Other CTL operators are:

e A[p Uq] andE [p U q] , requiring conditionp to be trueuntil a state is
reached that satisfies conditign

e AX pandEX p, requiring that conditiop is true in all or in some of the next states
reachable from the current state.

CTL operators can be nested in an arbitrary way and can beinethbsing logic operators
(', &|,->,<->,...). Typical examples of CTL formulas af&5 ! p (“conditionp is
absent in all the evolutions”AG EF p(“it is always possible to reach a state where
p holds”), andAG (p -> AF q) (“each occurrence of conditiom is followed by an
occurrence of conditioq”).
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In NUSMV a CTL specification is given as CTL formula introduced hg keyword
“SPEC. Whenever a CTL specification is processedjSMV checks whether the CTL
formula is true in all the initial states of the model. If thésnot a case, then 0DEMV
generates a counter-example, that is, a (finite or infinit&et that exhibits a valid behavior
of the model that does not satisfy the specification. Tragegery useful for identifying the
error in the specification that leads to the wrong behaviarrgvhark that the generation of
a counter-example trace is not always possible for CTL $ipations. Temporal operators
corresponding to existential path quantifiers cannot begatalse by a showing of a single
execution path. Similarly, sub-formulas preceded by usizkepath quantifier cannot be
proved true by a showing of a single execution path.

4.2 Semaphore Example

Consider the case of the semaphore program described ineti2giExamples], page 3. A
desired property for this program is that it should nevertgedase that the two processes
procl andproc2 are at the same time in thoitical state (this is an example of a
“safety” property). This property can be expressed by tileviang CTL formula:

AG ! (procl.state = critical & proc2.state = critical)

Another desired property is that, jirocl wants to enter its critical state, it eventually
does (this is an example of a “liveness” property). This propcan be expressed by the
following CTL formula:

AG (procl.state = entering -> AF procl.state = critical)

In order to verify the two formulas on the semaphore modeladethe two corresponding
CTL specification to the program, as follows:

MODULE main

VAR
semaphore : boolean;
procl . process user(semaphore);
proc2 . process user(semaphore);
ASSIGN

init(semaphore) := FALSE;
SPEC AG ! (procl.state = critical & proc2.state = critical)

SPEC AG (procl.state = entering -> AF procl.state = critical )
MODULE user(semaphore)
VAR
state :  {idle, entering, critical, exiting h;
ASSIGN
init(state) := idle;
next(state) :=
case
state = idle : {idle, entering }i
state = entering & !semaphore : critical;
state = critical : {critical, exiting IS
state = exiting : idle;
TRUE . state;
esac;
next(semaphore) :=
case
state = entering : TRUE;

state = exiting : FALSE;

14



TRUE . semaphore;
esac;
FAIRNESS
running

By running NUSMV with the command
system _prompt> NuSMV semaphore. smv

we obtain the following output:

-- specification AG (!(procl.state = critical & proc2.stat e = critical))
- is true
-- specification AG (procl.state = entering -> AF procl.sta te = critical)
-- is false

-- as demonstrated by the following execution sequence
-> State: 1.1 <-

semaphore = FALSE
procl.state = idle
proc2.state = idle

-> Input: 1.2 <-
_process_selector_ = procl
-- Loop starts here
-> State: 1.2 <-
procl.state = entering
-> Input: 1.3 <-
_process_selector_ = proc2
-> State: 1.3 <-
proc2.state = entering
-> Input: 1.4 <-
_process_selector_ = proc2
-> State: 1.4 <-
semaphore = FALSE
proc2.state = critical
-> Input: 1.5 <-

_process_selector_ = procl
-> State: 1.5 <-
-> Input: 1.6 <-
_process_selector_ = proc2
-> State 1.6 <-
proc2.state = exiting
-> Input: 1.7 <-
_process_selector_ = proc2
-> State 1.7 <-
semaphore = FALSE
proc2.state = idle

Note that process _selector _is a special variable which contains the name of the pro-
cess that will execute to cause a transition to the next.stdie 'Input ' section displays
the values of variables that the model has no control ovat, ithit cannot change their
value. Since processes are chosen nondeterministicaliisimodel, it has no control over
the value of process _selector ..

NuUSMYV tells us that the first CTL specification is true: it is netiee case that the two
processes will be at the same time in the critical region.l@rother hand, the second spec-
ification is false. NNSMV produces a counter-example path where initipligcl goes

to stateentering  (statel.2), and then a loop starts in whigioc2 repeatedly enters its
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critical region (statd.4) and then returns to iislle  state (staté.7); in the loop,procl

is activated only wheproc2 is in the critical region (input.5), and is therefore not able
to enter its critical region (statie5). This path not only shows that the specification is false,
it also points out why can it happen th@bcl never enters its critical region.

Note that in the printout of a cyclic, infinite counter-exdmthe starting point of the
loop is marked by- loop starts here . Moreover, in order to make it easier to
follow the action in systems with a large number of variabtedy the values of variables
that have changed in the last step are printed in the statbs trface.
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Chapter 5

LTL Model Checking

5.1 Linear Temporal Logic

NuSMYV allows for specifications expressed in LTL. Intuitivelyhile CTL specifications

express properties over the computation tree of the FSMh¢biag-time approach), LTL

characterizes each linear path induced by the FSM (linee-approach). The two logics
have in general different expressive power, but also shasigraficant intersection that
includes most of the common properties used in practiceic®/pTL operators are:

e F p (read “in the futurep”), stating that a certain conditiop holds in one of the
future time instants;

e G p(read “globallyp”), stating that a certain conditiop holds in all future time
instants;

e p U qg(readp until "), stating that conditiop holds until a state is reached where
conditionq holds;

e X p (read “nextp”), stating that conditiom is true in the next state.

We remark that, differently from CTL, LTL temporal operaao not have path quantifiers.
In fact, LTL formulas are evaluated on linear paths, and enfda is considered true in a
given state if it is true for all the paths starting in thatsta

5.2 Semaphore Example

Consider the case of the semaphore program and of the safétivaness properties al-
ready described in Chapter 4 [CTL Model Checking], page 1#®sE properties correspond
to LTL formulas

G ! (procl.state = critical & proc2.state = critical)
expressing that the two processes cannot be in the criggadm at the same time, and
G (procl.state = entering -> F procl.state = critical)

expressing that whenever a process wants to enter itsatsgéssion, it eventually does.
If we add the two corresponding LTL specification to the pasgras follows:

1In NUSMV a LTL specification are introduced by the keywotd'L SPEC.
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MODULE main

VAR
semaphore : boolean;
procl . process user(semaphore);
proc2 . process user(semaphore);
ASSIGN
init(semaphore) := FALSE;
LTLSPEC G ! (procl.state = critical & proc2.state = critical )
LTLSPEC G (procl.state = entering -> F procl.state = critica )]
MODULE user(semaphore)
VAR
state :  {idle, entering, critical, exiting b
ASSIGN
init(state) := idle;
next(state) :=
case
state = idle : {idle, entering }i
state = entering & !semaphore : critical;
state = critical : {critical, exiting IS
state = exiting : idle;
TRUE . state;
esac;
next(semaphore) :=
case
state = entering : TRUE;
state = exiting : FALSE;
TRUE . semaphore;
esac;
FAIRNESS
running

NuSMYV produces the following output:

-- specification G (!(procl.state = critical & proc2.state = critical))
-- is true

-- specification G (procl.state = entering -> F procl.state = critical)
-- is false

-- as demonstrated by the following execution sequence
Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

semaphore = FALSE
procl.state = idle
proc2.state = idle
-> Input: 1.2 <-
_process_selector_ = proc2
-- Loop starts here

-> State 1.2 <-
[...]

That is, the first specification is true, while the second lsefand a counter-example path
is generated.
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5.3 Past Temporal Operators

In NUSMV, LTL properties can also includeast temporal operators. Differently from
standard temporal operators, that allow to express priegesver the future evolution of
the FSM, past temporal operators allow to characterizegutigs of the path that lead to
the current situation. The typical past operators are:

e O p(read”oncep "), stating that a certain conditigm holds in one of the past time
instants;

e H p(read "historicallyp "), stating that a certain conditiogm holds in all previous
time instants;

e p S ¢ (read 'p sinceq "), stating that conditiorp holds since a previous state
where conditiorg holds;

e Y p(read”yesterdap "), stating that conditiop holds in the previous time instant.

Past temporal operators can be combined with future terhppesiators, and allow for the
compact characterization of complex properties.

A detailed description of the syntax of LTL formulas can barfd in the NuSMV 2.5
User Manual.
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Chapter 6

Bounded Model Checking

In this section we give a short introduction to the use of BlrchModel Checking (BMC)
in NUSMV. For a more in-depth introduction to the theory underlyBMC please refer
to [BCCZ99].

Consider the following model, representing a simple, deigistic counter modul®
(we assume that the following specification is containedérbfinc_tutorial.smv ):

MODULE main
VAR
y : 0..15;
ASSIGN
init(y) = 0;
TRANS
case
y =7 : next(y) = 0O;
TRUE : next(y) = ((y + 1) mod 16);
esac

This slightly artificial model has only the state varialgleranging from0 to 15. The
values ofy are limited by the transition relation to the [0, 7] intervdlhe counter starts
from 0, deterministically increments by one the valueyadit each transition up t@, and
then restarts from zero.

6.1 Checking LTL Specifications

We would like to check with BMC the LTL specificatic® ( y=4 -> X y=6 ) ex-
pressing that “each time the counter valuel,ighe next counter value will b&”. This
specification is obviously false, and our first step is to us&N YV BMC to demonstrate its
falsity. To this purpose, we add the following specificatiorfile bmc_tutorial.smv

LTLSPEC G ( y=4 -> X y=6 )
and we instruct NSMV to run in BMC by using command-line optiehmc :

system _prompt> NuSMWV -bnt bnt_tutorial.smv

-- no counterexample found with bound 0 for specification
Gy =4->Xy=6)

-- no counterexample found with bound 1 for ...

-- no counterexample found with bound 2 for ...

-- no counterexample found with bound 3 for ...

-- no counterexample found with bound 4 for ...
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-- specification G (y =4 > Xy = 6) is false
-- as demonstrated by the following execution sequence
Trace Description: BMC Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
y=20
-> State: 1.2 <-
y=1
-> State: 1.3 <-
y=2
-> State: 1.4 <-
y=3
-> State: 1.5 <-
y =4
-> State: 1.6 <-
y =25
system _prompt>

NUSMV has found that the specification is false, and is showsg counterexample, i.e.
a trace where the value gfbecomes! (at time4) and at the next step is n6t

bound: 0 1 2 3 4 5
0--->0--->0--->0--->0--->0
state: y=0 y=1 y=2 y=3 y=4 y=5

The output produced by l5SMV shows that, before the counterexample of lerigith
found, NUSMV also tried to finds counterexamples of lengiht® 4. However, there are
no such counterexamples. For instance, in the case of bhuhe traces of the model have
the following form:

bound: O 1 2 3 4
0--->0--->0--->0--->0
state: y=0 y=1 y=2 y=3 y=4

In this situationy gets the valud, but it is impossible for NSMV to say anything about
the following state.

In general, in BMC mode NSMV tries to find a counterexample of increasing length,
and immediately stops when it succeeds, declaring thattineuia is false. The maximum
number of iterations can be controlled by using commanediption-bmc _length . The
default value id0. If the maximum number of iterations is reached and no catexemple
is found, then NNSMV exits, and the truth of the formula is not decided. We rdatlat
in this case we cannot conclude that the formula is true, biytthat any counter-example
should be longer than the maximum length.

system _prompt> NuSMWV -bnt -bnt.length 4 bnt_tutorial.sm
-- no counterexample found with bound 0 for ...

-- no counterexample found with bound 1 for ...

-- no counterexample found with bound 2 for ...

-- no counterexample found with bound 3 for ...

-- no counterexample found with bound 4 for ...

system _prompt>

Let us consider now another propeiy, F (y = 2) , stating thal gets the valu@
only a finite number of times. Again, this is a false propettg do the cyclic nature of the
model. Let us modify the specification of filenc_tutorial.smv as follows:

LTLSPEC IG F (y = 2)
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and let us run NSMV in BMC mode:

system _prompt> NuSMWV -bnt bnt_tutorial.snv

-- no counterexample found with bound 0 for specification ! G
-- no counterexample found with bound 1 for ...
-- no counterexample found with bound 2 for ...
-- no counterexample found with bound 3 for ...
-- no counterexample found with bound 4 for ...
-- no counterexample found with bound 5 for ...
-- no counterexample found with bound 6 for ...
-- no counterexample found with bound 7 for ...

-- specification ' G Fy = 2 is false
-- as demonstrated by the following execution sequence
Trace Description: BMC Counterexample
Trace Type: Counterexample
-- Loop starts here
-> State: 1.1 <-
y=20
-> State: 1.2 <-
y=1
-> State: 1.3 <-
y =2
-> State: 1.4 <-
y =3
-> State: 1.5 <-
y =4
-> State: 1.6 <-
y=>5
-> State: 1.7 <-
y==5
-> State: 1.8 <-
y =17
-> State: 1.9 <-
y=20
system _prompt>

In this example NNSMV has increased the problem bound until a cyclic behavitargth
8 is found that contains a state wherealue is2. Since the behavior is cyclic, states is
entered infinitely often and the property is false.

I

I

I I
0--->0--->0--->0--->0--->0--->0--->0--->0

bound: 0 1 2 3 4 5 6 7 8

y value: 0 1 2 3 4 5 6 7 0

6.2 Finding Counterexamples

In general, BMC can find two kinds of counterexamples, depenadn the property being
analyzed. For safety properties (e.g. like the first one uiseldis tutorial), a counterex-

ample is a finite sequence of transitions through differeates. For liveness properties,
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counterexamples are infinite but periodic sequences, anbeaepresented in a bounded
setting as a finite prefix followed by a loop, i.e. a finite setpesof states ending with a
loop back to some previous state. So a counterexample whitiodstrates the falsity of a
liveness propertyad“G F p” cannot be a finite sequence of transitions. It must contain
a loop which makes the infinite sequence of transitions akaselie expected.

I
0--->0-...->0--->0--->0-...->0--->0--->0--->0--->
time: O 1 -1 | +1 k-2 k-1 Kk k+1

Consider the above figure. It represents an examples of aigémfanite counterexam-
ple, with its two parts: the prefix part (times frdio [ — 1), and the loop part (indefinitely
from[to k — 1). Because the loop always jumps to a previous time it is ddéiepback.
The loopback condition requires that state k is identicat#atel. As a consequence, state
k + 1is forced to be equal to statet- 1, statek + 2 to be equal to state+ 2, and so on.

A fine-grained control of the length and of the loopback ctindifor the counter-
example can be specified by using commelnelck _ltlspec  _bmc_onepb ininteractive
mode. This command accepts optieks that specifies the length of the counter-example
we are looking for, andl , that defines the loopback condition. Consider the follgwin
interactive session:

system _prompt> NuSMWV -int bnt_tutorial.sm
NuSMV>go_bnt
NuSMV>check_l t | spec_bnt_onepb -k 9 -1 0

-- no counterexample found with bound 9 and loop at O for speci fication
!'G Fy=2

NuSMV>check I t| spec_bnt _onepb -k 8 -1 1

-- no counterexample found with bound 8 and loop at 1 for speci fication
!'G Fy=2

NuSMV>check_l t | spec_bnt_onepb -k 9 -1 1
-- specification ' G Fy = 2 is false
-- as demonstrated by the following execution sequence
Trace Description: BMC Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
y=20
-- Loop starts here
-> State: 1.2 <-
y=1
-> State: 1.3 <-
y=2
-> State: 1.4 <-
y=3
-> State: 1.5 <-
y =4
-> State: 1.6 <-
y =5
-> State: 1.7 <-
y==86
-> State: 1.8 <-
y=17
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-> State: 1.9 <-
y =20

-> State: 1.10 <-
y=1

NuSMV>qui t

system _prompt>

NUSMYV did not find a counterexample for casés=£ 9,/ = 0) and ¢ = 8,1 = 1).
The following figures show that these case look for countamg{es that do not match with
the model of the counter, so it is not possible fas8MV to satisfy them.

I

I

I I
0--->0--->0--->0--->0--->0--->0--->0--->0--->0

bound: 0 1 2 3 4 5 6 7 8 9

y value: 0 1 2 3 4 5 6 7 0 1

+ +
I
|

0--->0--->0--->0--->0--->0--->0--->0--->0
bound: O 1 2 3 4 5 6 7 8
y value: 0 1 2 3 4 5 6 7 0

Case f = 9,1 = 1), instead allows for a counter-example:

k=9 | =1

+ +
I
|

0--->0--->0--->0--->0--->0--->0--->0--->0--->0
bound: 0 1 2 3 4 5 6 7 8 9
y value: 0 1 2 3 4 5 6 7 0 1

In NUSMV it is possible to specify the loopback condition in foufferent ways:

e The loop as a precise time-pointUse a natural number as the argument of option
-l

e The loop length. Use a negative number as the argument of optionThe negative
number is the loop length, and you can also imagine it as dgar¢éime-point loop
relative to the path bound.

e No loopback. Use symbol ‘X’ as the argument of optieh . In this case NSMV
will not find infinite counterexamples.
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¢ All possible loops. Use symbol *' as the argument of optioh . In this case
NuSMV will search counterexamples for paths with any possibdgpback struc-
ture. A counterexample with no loop will be also searcheds Ththe default value
for option-| .

In the following example we look for a counter-example ofgén12 with a loop of
lengths:

system _prompt> NuSMWV -int bnt_tutorial.sm
NuSMV>go_bnt

NuSMV>check. t| spec_bnt_onepb -k 12 -1 -8

-- specification ' G Fy =2 is false

-- as demonstrated by the following execution sequence
Trace Description: BMC Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

y=20

-> State: 1.2 <-
y=1

-> State: 1.3 <-
y =2

-> State: 1.4 <-
y =3

-- Loop starts here

-> State: 1.5 <-
y =4

-> State: 1.6 <-
y=>5

-> State: 1.7 <-
y =6

-> State: 1.8 <-
y =17

-> State: 1.9 <-
y=20

-> State: 1.10 <-
y=1

-> State: 1.11 <-
y =2

-> State: 1.12 <-
y =23

-> State: 1.13 <-
y =4

NuSMv>

This picture illustrates the produced counterexample iroeereffective way:

+ +

|

|

I I
0-->0-->0-->0-->0-->0-->0-->0-->0-->0-->0-->0-->0

bound: 0 1 2 3 4 5 6 7 8 9 10 11 12
y value: 0 1 2 3 4 5 6 7 0 1 2 3 4
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If no loopback is specified, BISMV is not able to find a counterexample for the given
liveness property:

system _prompt> NuSMWV -int bnt_tutorial.snv
NuSMV>go_bnt

NuSMV>check. t| spec_bnt_onepb -k 12 -1 X

-- no counterexample found with bound 12 and no loop for ...
NuSMvV>

6.3 Checking Invariants

Ahead of version 2.2.2, NSMV supported only the 2-step inductive reasoning algorith
for invariant checking. As will become clear from this tugdy this algorithm is not com-
plete, so in certain cases it cannot be used to state whethievariant specification is
actually true or false.

Since version 2.2.2, NSMV supports total inductive reasoning, which might be heav
ier than the 2-step approach but can make invariant spewfisgprovable even when the
latter fails.

Please refer to [ES04] for a more in-depth explanation ofttle®ry underlying the
algorithms for total temporal induction.

6.3.1 2-Step Inductive Reasoning

Bounded Model Checking in BISMV can be used not only for checking LTL specification,
but also for checking invariants. An invariantis a proposial property which must always
hold. BMC tries to prove the truth of invariants via a procesiductive reasoning, by
checking if (i) the property holds in every initial state,dai) if it holds in any state
reachable from any state where it holds.

Let us modify filebmc_tutorial.smv by replacing the LTL specification with the
following invariant specification:

INVARSPEC y in (0..12)
and let us run NSMV in BMC mode:

system _prompt> NuSMW -bnt bnt_tutorial.snv

-- cannot prove the invariant y in (0 .. 12) : the induction fai
-- as demonstrated by the following execution sequence
Trace Description: BMC Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

y = 12
-> State: 1.2 <-
y = 13

system _prompt>

NUSMYV reports that the given invariant cannot be proved, astidws a state satis-
fying “y in (0..12)" that has a successor state not satisfyipgri' (0..12)". This two-steps
sequence of assignments shows why the induction fails. thateNuSMV does not state
the given formula is really false, but only that it cannot beyen to be true using the 2-step
inductive reasoning described previously.

If we try to prove the stronger invariapt in (0..7) we obtain:

system _prompt> NuSMWV -bnt bnt_tutorial.smv
-- invariant y in (0 .. 7) is true
system _prompt>
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In this case NNSMV is able to prove that in (0..7) is true. As a consequence, also
the weaker invariang in (0..12) is true, even if NNSMYV is not able to prove it in
BMC mode. On the other hand, the returned counter-exampléeaised tetrengthen
the invariant, until NSMYV is able to prove it.

Now we check the false invariapt in (0..6)

-- cannot prove the invariant y in (0 .. 6) : the induction fail
-- as demonstrated by the following execution sequence
Trace Description: BMC Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
y==86
-> State: 1.2 <-
y =7
NuSMvV>

As for propertyy in (0..12) , NUSMV returns a two steps sequence showing that the
induction fails. The difference is that, in the former cat®es’y=12" is NOT reachable,
while in the latter case the state 'y=6’ can be reached.

6.3.2 Complete Invariant Checking

Since version 2.2.2, complete invariant checking can baionbt by running the command
check _invar _bmcininteractive mode, and specifying the algorithegn-sorensson”
using the optiona . If an incremental sat solver is available, the command
check _invar _bmc.inc may also be used.

The classic 2-step algorithm was not able to prove direbiyttuth of the invariant
y in (0..12) . This invariant can now be easily checked by the completariant
checking algorithm.

system _prompt> NuSMWV -int bnt_tutorial.sm
NuSMV>go_bnt

NuSMV>check_i nvar _bnt -a een-sorensson -p "y in (0..12)"
-- no proof or counterexample found with bound .

-- no proof or counterexample found with bound
-- no proof or counterexample found with bound
-- no proof or counterexample found with bound
-- no proof or counterexample found with bound
-- no proof or counterexample found with bound
-- invariant y in (0 .. 12) is true

NuSMv>

abr~rwNPELO

As can be inferred from this exampleplSMV proved that the invariant actually holds,
requiring a length of 6 to prove it.

Complete invariant checking can also prove that an invadaes not hold, and pro-
vide a convincing counter-example for it. For example propg in (0..6) that the
“classic” algorithm failed to check is now proved to be false:

NuSMV>check_.i nvar bnt -a een-sorensson -p "y in (0..6)"
-- no proof or counterexample found with bound .

-- no proof or counterexample found with bound
-- no proof or counterexample found with bound
-- no proof or counterexample found with bound
-- no proof or counterexample found with bound
-- no proof or counterexample found with bound

abrhwNEFLO
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-- no proof or counterexample found with bound 6 ...
- invariant y in (0 .. 6) s false
-- as demonstrated by the following execution sequence
Trace Description: BMC Counterexample
Trace Type: Counterexample
-> State: 1.1 <-
y=20
-> State: 1.2 <-
y=1
-> State: 1.3 <-
y =2
-> State: 1.4 <-
y =3
-> State: 1.5 <-
y =4
-> State: 1.6 <-
y =25
-> State: 1.7 <-
y==5
-> State: 1.8 <-
y=17
NuSMV>

The provided counter-example shows thiactually can reach a value out of the set
(0..6)
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