
 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

1 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

 

ISSUE TO 

 

 

COPY NO.  

 

 

XVBA 

AMD’s Linux Video Acceleration  
 

Rev 0.74.01-AES-2 
 
 

 

 

AMD Embedded Solutions  

© 2011 Advanced Micro Devices, Inc. All rights reserved.  

 

 

 

 

 

The information presented in th is document is for informational purposes only and may contain technical inaccuracies, omissio ns and 
typographical errors. The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but 

not limited to product and roadmap changes, component and motherboard version changes, new model and/or product releases, pro duct 
differences between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like.  AMD assumes no obligation to 
update or otherwise correct or revise this information.  However, AMD reserves the right to revise this information and to ma ke changes from 
time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes. AMD MAKES NO 

REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY 
INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.  AMD SPECIFICALLY DISCLAIMS ANY IMPLIED 
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.  IN NO EVENT WILL AMD BE LIABLE TO ANY 

PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY 
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.  No license, 
whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document.  

© 2011 Advanced Micro Devices, Inc.  All rights reserved.  AMD, the AMD Arrow logo, ATI, the ATI logo, Avivo, Catalyst, Radeon, and 
combinations thereof are trademarks of Advanced Micro Devices, Inc.  Other names are for informational purposes only and may be 
trademarks of their respective owners. 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

2 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

1. INTRODUCTION ........................................................................................................................................................................................4 

2. XVBA HIGH LEVEL S YS TEM OVERVIEW ....................................................................................................................................5 

2.1 XVBA HIGH LEVEL DIAGRAM..................................................................................................................... 5 
2.2 XVBA DESIGN NOTES ............................................................................................................................... 6 
2.3 XVBA MULTI-SESSIONS USAGE SCENARIO .................................................................................................... 6 
2.4 APPLICATION COMPONENTS DEPENDENCY DIAGRAM ....................................................................................... 8 

3. XVBA API DES CRIPTION AND DATA STRUCTURES  ...............................................................................................................9 

3.1 XVBA VIDEO PLAYBACK PIPELINE .............................................................................................................. 9 
3.2 XVBAQUERYEXTENSION .......................................................................................................................... 10 
3.3 CREATE & DESTROY XVBA CONTEXT ......................................................................................................... 10 

3.3.1 XVBACreateContext ...................................................................................................................................................................10 
3.3.2 XVBADestroyContext .................................................................................................................................................................11 

3.4 QUERY SESSION INFO................................................................................................................................ 11 
3.4.1 XVBAGetSessionInfo ..................................................................................................................................................................11 

3.5 CREATE & DESTROY SESSION RESOURCE ...................................................................................................... 12 
3.5.1 Create and Destroy Surface ......................................................................................................................................................12 

3.5.1.1 XVBACreateSurface ...................................................................................................................... 12 
3.5.1.2 XVBACreateGLSharedS urface ........................................................................................................ 12 
3.5.1.3 XVBADestroySurface .................................................................................................................... 13 

3.5.2 Create and Destroy Compressed Data Buffers (decode) .....................................................................................................13 
3.5.2.1 XVBACreateDecodeBuffers ............................................................................................................ 14 
3.5.2.2 XVBADestroyDecodeBuffers  .......................................................................................................... 14 

3.6 DECODE SESSION APIS.............................................................................................................................. 15 
3.6.1 Query Decode Capability ..........................................................................................................................................................15 

3.6.1.1 XVBAGetCapDecode..................................................................................................................... 15 
3.6.2 Create/Destroy XVBA Decode Session ...................................................................................................................................17 

3.6.2.1 XVBACreateDecode ...................................................................................................................... 17 
3.6.2.2 XVBADestroyDecode .................................................................................................................... 17 

3.6.3 Decode Acceleration Functions................................................................................................................................................18 
3.6.3.1 XVBAStartDecodePicture ............................................................................................................... 18 
3.6.3.2 XVBADecodePicture ..................................................................................................................... 18 
3.6.3.3 XVBAEndDecodePicture ................................................................................................................ 19 

3.6.4 Synchronization and Decode Error Query  .............................................................................................................................20 
3.6.4.1 XVBASyncS urface ........................................................................................................................ 20 

3.6.5 Transfer Decoded Frame Data.................................................................................................................................................21 
3.6.5.1 XVBAGetSurface .......................................................................................................................... 21 
3.6.5.2 XVBATransferSurface ................................................................................................................... 22 

4. DECODE DATA BUFFERS ....................................................................................................................................................................23 

4.1 PICTURE DESCRIPTOR BUFFER .................................................................................................................... 23 
4.1.1 Common fields of XVBAPictureDescriptor structure ..............................................................................................25 
4.1.2 H264 specific fields of XVBAPictureDescriptor structure......................................................................................26 

4.1.2.1 The H264 picture parameters are defined in sps_info structure: .............................................................. 28 
4.1.2.2 The H264 picture parameters are defined in pps_info st ructure:.............................................................. 29 

4.1.3 VC1 specific fields of XVBAPictureDescriptor  structure........................................................................................30 
4.1.3.1 The VC1 picture parameters are defined in sps_info structure: ............................................................... 30 
4.1.3.2 The VC1 picture parameters are defined in pps_info structure:............................................................... 31 

4.2 DATA BUFFER ......................................................................................................................................... 34 
4.2.1 Bitstream decode (H.264 and VC-1)........................................................................................................................................34 
4.2.2 MPEG2 iDCT level decode .......................................................................................................................................................34 

4.3 DATA CONTROL BUFFER OR SLICE BUFFER.................................................................................................... 34 
4.3.1 Bitstream decode (H.264 and VC-1)........................................................................................................................................34 

4.3.1.1 Data Control Buffer and Data Buffer Relation for H.264 and VC-1 ......................................................... 34 
4.3.2 MPEG2 iDCT level decode .......................................................................................................................................................35 

4.4 QM BUFFER ............................................................................................................................................ 36 
4.4.1 Bitstream decode (H.264 and VC-1)........................................................................................................................................36 
4.4.2 MPEG2 iDCT level decode .......................................................................................................................................................37 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

3 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

 

  



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

4 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

1. Introduction 

 

This document contains AMD’s video pipeline API for Linux (GPU decode acceleration). New API is named 

XVBA: Xv Bitstream Acceleration.  This document explains the XVBA infrastructure role in Linux with and 

without decode GPU acceleration. 

XVBA API idea has similarity to XvMC API (version 1.0).  XVBA does not support the XvMC MPEG2 decode. 

XVBA API design goals and highlights: 

 XVBA MPEG2 with new compressed data buffers layout (bit layout supported by AMD HW) 

 XVBA should be simple to implement for decoder that already has XvMC API working. 

 XVBA supports bitstream decode GPU based acceleration– first revision supports h.264 and VC-

1.MPEG2 is supported at IDCT level. 

 XVBA is extendable for new codecs.  Only bitstream level decode acceleration is planned to be 

supported in future revisions. 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

5 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

2. XVBA High Level System Overview 
 

2.1 XVBA High Level Diagram 

The following diagram shows the high level view of XVBA pipeline.  
 

Destroy

Decode

Session

Create

Session

XVBAQueryExt ensi on( )

Supported

Creat e Cont ext  ( )

Creat e Sessi on Resource ( )

Job Begi n ( )

Job Execute ()

Job End ( )

Synchroni zat i on ( )

Dest roy Resouce ( )

 Dest roy Sessi on ( )

Dest roy Cont ext  ( )

OK

Creat e Sessi on ( )

Get  Sessi on I nf o( )

END

Get  Sessi on Capabi l i t y ( )

Session End ?
NO

YES

Not Supported

 
 

Definition  

 Context: Application created driver context. 

 Session: XVBA capability entity.  



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

6 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

 Job: GPU job. 

 Session capability: GPUfeature exposed through driver to application.  

 

2.2 XVBA Design Notes 

What is new in XVBA compared to XvMC: 

 New API functions for bitstream decode 

 New data structures and new bitstream compressed data structures 

 New functions: Start and End picture decoding.  These function are important for driver to set 

decode jobs correctly on the accelerator. 

 Multi decode session within one context 

 XVBA adopts concept of capability and session 

 Session can be added and removed without destroying (and re-creating) context 

 XVBA is expandable for new capabilities 

Notes on XVBA API   
 

 Only 1 drawable is supported in driver context  

 Context contains 1 or more sessions  

 Sessions can be removed and added to context without destroying the context 

 Session creates and owns surfaces 

 Context can destroy all sessions and release its resources  
 

2.3 XVBA Multi-Sessions Usage Scenario 
 

For XVBA pipeline, application is capable of creating multiple sessions within one XVBA context.  Multi-

sessions can be either the combination of different sessions or same multiple sessions.  The following 

diagram shows the high level view of multi-sessions usage scenario. 
 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

7 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

 XVBAQueryExtension()

Get Session Info()

XvBACreateContext()

Created a driver context

Playback

Player destroys H.264 session 

and creates an MPEG2 session

Create H.264 Decode Session & Resource

Created H.264 session

Create MPEG2 Decode Session & Resource

Created MPEG2 session

Decode

Session 

H.264

Decode

Session

MPEG2 

Destroy H.264 Decode Session & Resource

Destroy the H.264 session

Create second MPEG2 Session & Resource

Create an MPEG2 session

Playback

End of playback

(new)

Decode

Session 

MPEG2

(existing)

Decode

Session

MPEG2 

XVBADestroyContext()
Destroy Context
Destroy context will 

release all sessions and 

resources



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

8 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

 

2.4 Application Components Dependency Diagram 
 

Figure below shows the structure diagram between player application and the driver using XVBA API. 

 
 

amdlmmd driver

PLAYER APPLICATION

XvMC API XVBA API

libXVBAW

 
 

 

 Application is linked to libXVBAW library which provides XVBA interface. 

 libXVBAW  library is responsible to load the corresponding amdlmmd driver and to retrieves all 

necessary pointers from them. 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

9 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

3. XVBA API Description and Data Structures 

 

3.1 XVBA Video Playback Pipeline 
 

XVBA allows player to use GPU in the following scenarios:  

- Hardware Decode with OpenGL (full hardware video playback pipeline) 

- Hardware Decode with X11 or XVideo presentation (not shown)  
 

OpenGL RenderDecode Session

XvBAQueryExt ensi on ( )

Create XvBA Context

XvBACreat eCont ext  ( )

Destroy XvBA

Resource / Session / Context XvBADest royDecodeBuf f ers ( )

XvBADest roySurf ace ( )

XvBADest royDecode ( )

OK
XvBAGet Sessi onI nf o ( )

XvBACreat eDecodeBuf f ers ( )

XvBASt art Pi ct ureDecode ( )

XvBAPi ct ureDecode ( )

XvBAEndPi ct ureDecode ( )

XvBASyncSurf ace ( )

XvBACreat eDecode ( )

XvBAGet CapDecode ( )

gl Begi n ( )

GL Render

gl End ( )

Decoded 

Frame Ready Playback

End?

START

END

NO YES

YES

NO

XvBADest royCont ext  ( )

XvBATransf erSurf ace ( )

 

Diagram of Video Playback Pipeline Using XVBA API 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

10 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

 

3.2 XVBAQueryExtension 
 

Application has to check first if XVBA is available.  If XVBAQueryExtension() returns TRUE host queries for 

the XVBA caps; else if this function returns FALSE application may try XvMC or Xv. 
 

Bool  

XVBAQueryExtension  

( 

 Display *display,  /*in*/ 

 int  *version  /*out*/ 

); 

   display  - connection to the server. 

   version  - returned XVBA version = XVBA_VERSION_MAJOR << 16) | XVBA_VERSION_MINOR 
 

   Returns: True if XVBA is supported with XVBAVersion, False otherwise. 

 
 

3.3 Create & Destroy XVBA Context 
 

 To use XVBA, application must create a XVBA context first 

 Context is based on Display and Drawable.  

 Context can have only 1 Drawable. 

 Context can have 1 or more sessions. 

 

3.3.1 XVBACreateContext 
 
 
typedef struct { 

   unsigned int  size;  //structure size 

 

   Display         *display; 

   Drawable        draw; 

 

} XVBA_Create_Context_Input; 

 
typedef struct { 

   unsigned int  size;  //structure size 

 

   void          *context; 

 

} XVBA_Create_Context_Output; 

 

Status  

XVBACreateContext ( 

   XVBA_Create_Context_Input  *create_context_input,    /*in*/  

   XVBA_Create_Context_Output *create_context_output    /*out*/ 

); 

 

Driver creates a context and returns a pointer to its context .  

 

Errors: 

      BadValue - invalid input values: display or drawable. 
 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

11 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

 
 

3.3.2 XVBADestroyContext 
 

 Destroying context will release all sessions in this context and resources own by each session 

 
 

Status  

XVBADestroyContext ( 

 void  *context             

); 

 

*context  - Pointer to the XVBA driver context structure. 

 

Errors: 

      BadContext - XVBAContext is not valid. 
 

 

3.4 Query Session Info  

Application has to query for session info before session creation in XVBA.  In XVBA version 1.0, the 

following sessions are exposed: 

- Decode (H.264, VC-1, MPEG2) 

 
 

3.4.1 XVBAGetSessionInfo 
 
typedef struct { 

   unsigned int  size;  //structure size 

   void  *context;           

 

} XVBA_GetSessionInfo_Input; 

 

 

typedef struct { 

   unsigned int  size;  //structure size 

 

   unsigned int getcapdecode_output_size; // 0 = Decode not supported, non zero value = Decode session is 

supported and this value is used for XVBAGetCapDecode output 

struct size 

   unsigned int xvba_gsio_reserved_0; // Not used by XVBA 

   unsigned int xvba_gsio_reserved_1; // Not used by XVBA 

 

} XVBA_GetSessionInfo_Output; 

 
 

Bool  

XVBAGetSessionInfo 

( 

 XVBA_GetSessionInfo_Input  *get_session_info_input, 

 XVBA_GetSessionInfo_Output *get_session_info_output 

); 

 

   Returns: True if capability list was successfully created, False otherwise. 

 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

12 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

3.5 Create & Destroy Session Resource  

 

3.5.1 Create and Destroy Surface 
 

3.5.1.1 XVBACreateSurface 

 

 This function creates a surface within the specified context. 

 Surface can be used by other sessions within the same context. 

 Surface is owned by session that created it.  

 Surface can be destroyed only by session that created it. 

 XVBACreateSurface allocates 1 surface at the time. 
 
 
typedef struct 

{ 

  unsigned int  size; 

 

  void  *session; 

  unsigned int  width; 

  unsigned int height; 

  XVBA_SURFACE_FORMAT surface_type; 

 

} XVBA_Create_Surface_Input; 

 
typedef struct 

{ 

  unsigned int  size; 

  void  *surface; // Pointer to XVBASurface 

 

} XVBA_Create_Surface_Output; 

 
 

Status  

XVBACreateSurface( 

 XVBA_Create_Surface_Input  *create_surface_input, 

 XVBA_Create_Surface_Output  *create_surface_output 

); 

 

Errors: 

BadValue – invalid data 

BadAlloc - there are insufficient resources to complete this operation.  

 

3.5.1.2 XVBACreateGLSharedSurface 

 

 This function creates a XVBA shared surface holder for OpenGL texture buffer within XVBA 

pipeline. 
 
typedef struct 

{ 

  unsigned int  size; 

 

  void  *session; 

  void  *glcontext; 

  unsigned int gltexture; 

 

} XVBA_Create_GLShared_Surface_Input; 

 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

13 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

typedef struct 

{ 

  unsigned int  size; 

  void  *surface; // Pointer to XVBASurface 

 

} XVBA_Create_GLShared_Surface_Output; 

 
 

Status  

XVBACreateGLSharedSurface( 

 XVBA_Create_GLShared_Surface_Input  *create_glshared_surface_input, 

 XVBA_Create_GLShared_Surface_Output  *create_glshared_surface_output 

); 

 

Errors: 

BadValue – invalid data 

BadAlloc - there are insufficient resources to complete this operation. 

 

3.5.1.3 XVBADestroySurface 

 
Status  

XVBADestroySurface( 

 void  *surface 

); 

 

    surface - surface to be destroyed. 

 

    Errors: 

       BadSurface - XVBASurface is not valid. 

 

3.5.2 Create and Destroy Compressed Data Buffers (decode) 
 

typedef enum 

{ 

    XVBA_NONE = 0, 

    XVBA_PICTURE_DESCRIPTION_BUFFER, 

    XVBA_DATA_BUFFER, 

    XVBA_DATA_CTRL_BUFFER, 

    XVBA_QM_BUFFER 

    

} XVBA_BUFFER; 

 

typedef struct 

 {  
    unsigned int    size;                   //structure size   

    XVBA_BUFFER    buffer_type; 

    int          buffer_size;            //allocated size of data in bytes 

    void      *bufferXVBA;            //pointer to XVBA decode data buffer 

int   data_size_in_buffer; //Used in Decode call only 

int         data_offset;  //Used in Decode call only 

    void  *appPrivate;  //used only by application to store pointer to its private data.  

 

} XVBABufferDescriptor;  



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

14 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

 

3.5.2.1 XVBACreateDecodeBuffers 
 

typedef struct  

{ 

 unsigned int  size;    //structure size 

  

 void   *session; 

 XVBA_BUFFER  buffer_type;  

 unsigned int                 num_of_buffers;  

 

} XVBA_Create_DecodeBuff_Input; 

 

typedef struct  

{ 

 unsigned int  size;    //structure size 

 

 unsigned int                 num_of buffers_in_list;   

   XVBABufferDescriptor  *buffer_list;              

 

} XVBA_Create_DecodeBuff_Output; 

 

 

Status  

XVBACreateDecodeBuffers ( 

    XVBA_Create_DecodeBuff_Input *create_decodebuff_input,  

    XVBA_Create_DecodeBuff_Output *create_decodebuff_output  

); 

 

Errors:  

 BadAlloc  -  There are insufficient resources to complete the operation.  

 BadValue -  bad input data  
 

 

 

3.5.2.2 XVBADestroyDecodeBuffers 
 

 

typedef struct  

{ 

 unsigned int  size; 

 

 void           *session 

 unsigned int                 num_of_buffers_in_list; 

   XVBABufferDescriptor  *buffer_list;                 

 

} XVBA_Destroy_Decode_Buffers_Input; 

   session  - pointer to XVBASession. 

   num_of_buffer_in_list – number of decode compressed data buffers to be released 

   bufferList - array of XVBA_BUFFER_DESCRIPTOR structures 
 

 

   Frees resources allocated for decode (compressed data buffers). 
 

Status  

XVBADestroyDecodeBuffers ( 

        XVBA_Destroy_Decode_Buffers_Input  *buffer_list             

); 

 

Errors:  

BadValue - bad input data  



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

15 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

 
 

   Notes: 

 If XVBADestroyDecode() is called to destroy a decode session and it will automatically release all 

resources owned session.  There is no need to call an XVBADestroyDecodeBuffers or 

XVBADestroySurface() separately before releasing the entire session.  

 Similar for XVBADestroyContext() all allocated resources will be released; no need to call XVBA 

destroy functions separately. 

 Application can use this function to release decode buffers without destroying the session. 

 

 

3.6 Decode Session APIs 

Every picture decode starts with one XVBAStartDecodePicture() fn call and ends with a single 

XVBAEndDecodePicture().  In between these two function calls, XVBA host can call multiple times 

XVBADecodePicture() to submit decode data buffers to driver. 

 

3.6.1 Query Decode Capability 
 

3.6.1.1 XVBAGetCapDecode 

 

XVBACap structure defines capability: 

// XVBADecodeCap capability_id 

typedef enum 

{ 

 XVBA_H264  = 0x100,  /*bitstream level of acceleration*/ 

 XVBA_VC1,   /*bitstream level of acceleration*/ 

 XVBA_MPEG2_IDCT,  /*iDCT and motion compensation level of acceleration*/ 

 XVBA_MPEG2_VLD   /*bitstream level of acceleration*/ 

} XVBA_CAPABILITY_ID; 

 

// XVBADecodeCap flag 

typedef enum 

{ 

 XVBA_NOFLAG = 0; 

 

 XVBA_H264_BASELINE, 

 XVBA_H264_MAIN, 

 XVBA_H264_HIGH, 

 

 XVBA_VC1_SIMPLE, 

 XVBA_VC1_MAIN, 

 XVBA_VC1_ADVANCED, 

 

} XVBA_DECODE_FLAGS; 

 

typedef struct { 

   unsigned int   size;                //structure size 

 

   XVBA_CAPABILITY_ID capability_id;    

   XVBA_DECODE_FLAGS flags; 

   XVBA_SURFACE_FORMAT surface_tpye; 

 

} XVBADecodeCap; 

 

capability_id – description of acceleration level. 

flags – defines for additional information about capability  

surface_type – fourcc YUV or RGB supported with this capability. 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

16 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

typedef enum 

{ 

 XVBA_FRAME = 0; 

 XVBA_TOP_FIELD, 

 XVBA_BOTTOM_FIELD, 

} XVBA_SURFACE_FLAG; 

 

typedef struct { 

   unsigned int   size;                //structure size 

 

   XVBA_SURFACE_FORMAT surface_tpye; 

   XVBA_SURFACE_FLAG flag; 

 

} XVBA_GetSurface_Target; 

 
 

typedef struct { 

   unsigned int  size;  //structure size 

   void  *context; 

 

} XVBA_GetCapDecode_Input; 

 

 

typedef struct { 

   unsigned int  size;  //structure size 

 

   unsigned int  num_of_decodecaps;  

   XVBADecodeCap decode_caps_list []; 

 

   unsigned int  num_of_getsurface_target; 

   XVBA_GetSurface_Target getsurface_target_list []; 

 

} XVBA_GetCapDecode_Output; // this structure size should match on the value returned from GetSessionInfo 

() 

 

 

Bool  

XVBAGetCapDecode ( 

 XVBA_GetCapDecode_Input  *decodecap_list_input, 

 XVBA_GetCapDecode_Ouptut *decodecap_list_output 

); 

 

   Returns: True if capability list was successfully created, False otherwise. 
 

Example of Reporting Decode Capability  

 

Example: if accelerator supports various decode targets in capability it will report it separately in 

preference order: 
  
//Capability 1 

{ 

   capability_id = XVBA_H264; 

   flags         = XVBA_H264_BASELINE; 

   surface_type  = NV12; 

}  

//Capability 2 

{ 

   capability_id = XVBA_H264; 

   flags         = XVBA_H264_MAIN; 

   surface_type  = NV12; 

}  

//Capability 3 

{ 

   capability_id = XVBA_H264; 

   flags         = XVBA_H264_HIGH; 

   surface_type  = NV12; 

}  

//Capability 2 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

17 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

{ 

   capability_id = XVBA_H264; 

   flags         = XVBA_H264_BASELINE; 

   surface_type  = YV12; 

}  

//Capability 2 

{ 

   capability_id = XVBA_h264; 

   flags         = XVBA_H264_MAIN; 

   surface_type  = YV12; 

} 

… 

In this example driver signals to the application that NV12 surface is the most preferred for 4:2:0 

decode. 

 

Note: in current AMD accelerators only NV12 decode target is supported.  Above example does not imply other YUV decoder target 

availability and/or AMD accelerator product roadmap. 
 
 

3.6.2 Create/Destroy XVBA Decode Session 

 Context can have 1 or more decode sessions. 

 Session must be created before resource creation (surface or compressed buffer)  

 Session owns the surfaces it created. 

 Surfaces can be shared with other session within the context 
 

3.6.2.1 XVBACreateDecode 
 
typedef struct { 

   unsigned int  size;              //structure size 

   unsigned int  width;  // Decoded video width 

   unsigned int  height;  // Decoded video height 

   void  *context; 

   XVBADecodeCap  *decode_cap; 

 

} XVBA_Create_Decode_Session_Input; 

 

 

typedef struct { 

   unsigned int  size;              //structure size 

   void  *session;          // Pointer to the created decode session 

 

} XVBA_Create_Decode_Session_Output; 

 
 

Status  

XVBACreateDecode ( 

   XVBA_Create_Decode_Session_Input *create_decode_session_input, 

   XVBA_Create_Decode_Session_Output *create_decode_session_output 

); 

 

 

   Errors: 

      BadValue -  invalid value input size or capability. 

      BadContext - The XVBAContext is not valid. 
 

 

3.6.2.2 XVBADestroyDecode 
 

 Destroys specified session. 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

18 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

 Destroying a session will release all allocated resources (surfaces, compressed decode data 

buffers for this session, etc.) 
 

Status  

XVBADestroyDecode ( 

    void *session 

); 

 

 

     Errors:     

BadValue – invalid session 

 

3.6.3 Decode Acceleration Functions 

 

3.6.3.1 XVBAStartDecodePicture 

 

typedef struct  

{ 

 unsigned int size;  //structure size 

 

 void  *session;  

   void  *target_surface; 

 

} XVBA_Decode_Picture_Start_Input; 

   session  - pointer to XVBASession. 

   target_surface  – decode target  

 

Status  

XVBAStartDecodePicture ( 

    XVBA_Decode_Picture_Start_Input         *decode_picture_start 

); 

 

Errors: 

        BadSurface - target surface is not valid. 

        BadValue  -  bad XVBASession 

 

3.6.3.2 XVBADecodePicture 

XVBADecodePicutre is the function used by application to submit decode compressed data buffers to driver. 

 

typedef struct  

{ 

 unsigned int  size; //structure size 

 

 void           *session;  

   unsigned int   num_of_buffers_in_list; 

 XVBABufferDescriptor  **buffer_list; 

 

} XVBA_Decode_Picture_Input; 

session  - pointer to the decode session. 

num_of_buffers_in_list – number of decode compressed data buffers  

buffer_list - array of XVBABufferDescriptor structures 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

19 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

 

Status  

XVBADecodePicture ( 

    XVBA_Decode_Picture_Input          *decode_picture_input 

); 

 

 

Errors: 

 BadSurface  - Any of the surfaces are not valid. 

 BadValue  – bad data in decode data buffer(s) (driver and hw prescreen the compressed 

data buffers before processing on GPU), invalid data in XVBASession, error in num_of_buffer_in_list value 
 

 

 

Notes: Decoder can call multiple times XVBADecodePicture() to submit XVBA compressed data buffers, 

however there are restrictions: 

 Proper sequence call for multi XVBADecodePicture(): 

o XVBAStartDecodePicture() 

 XVBADecodePicture() 

 XVBADecodePicture() 

 …. 

 XVBADecodePicture() 

o XVBAEndDecodePicture 

o XVBAStartDecodePicture() 

 XVBADecodePicture() 

 XVBADecodePicture() 

 …. 

 XVBADecodePicture() 

o XVBAEndDecodePicture() 

o ... 

 In single XVBADecodePicture() call application can submit only 1 buffer of each type 

 Application submits only 1 XVBA_PICTURE_DESCRIPTION_BUFFER and XVBA_QM_BUFFER buffer for every picture 

 Application submits XVBA_DATA_BUFFER and XVBA_DATA_CTRL_BUFFER buffers together. 

 It is highly recommended that application submits all bitstream data for 1 picture in 1 XVBA_DATA_BUFFER for 

H.264/VC-1.  Driver will allocate XVBA_DATA_BUFFER buffer big enough to accommodate the all data for single 

picture in one XVBADecodePicture() call. 

 

3.6.3.3 XVBAEndDecodePicture 
 

typedef struct  

{ 

 unsigned int size; 

 void  *session;  

 

} XVBA_Decode_Picture_End_Input; 

 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

20 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

When compressed data decode buffers submissions to driver for current picture are completed, host 

notifies driver that all data for this picture decode is sent calling XVBAEndDecodePicture(). 

 

Status  

XVBAEndDecodePicture ( 

    XVBA_Decode_Picture_End_Input         *decode_picture_end_input       

); 

 

 

  Errors: 

        BadValue – invalid data  

 

 

3.6.4 Synchroni zation and Decode Error Query 
 

3.6.4.1 XVBASyncSurface 

 Application uses this function to check if decode job is finished before presentation  

 In bitstream GPU decode (h.264 and VC-1) application can use this function to query for decode 

errors  

 
/* XVBA decode error */ 

typedef enum 

{  

DECODE_NO_ERROR = 0, 

DECODE_BAD_PICTURE,  //the entire picture is corrupted – all MBs are invalid 

DECODE_BAD_SLICE, //part of the picture, slice, wasn’t decoded properly – all MBs in this slice are bad 

DECODE_BAD_MB  //some MBs are not decoded properly 

 

} XVBA_DECODE_ERROR; 

 

typedef struct  

{ 

   unsigned int size;     //structure size 

   XVBA_DECODE_ERROR type;  

   unsigned int   num_of_bad_mbs; //number of marcoblocks that were not properly decoded 

     

} XVBADecdoeError; 

 

/* Synchronization query_status_flags */ 

typedef enum 

{  

 XVBA_GET_SURFACE_STATUS = 1, /* get surface status; is surface still used by GPU*/ 

 XVBA_GET_DECODE_ERRORS  /* get decode errors for target surface*/ 

 

} XVBA_QUERY_STATUS; 

 

typedef struct  

{ 

   unsigned int size;  

   void   *session; 

   void   *surface; 

   XVBA_QUERY_STATUS query_status_flags; 

       

} XVBA_Surface_Sync_Input; 

 

// define for status_flags 

#define XVBA_STILL_PENDING 0x00000001 ///< surface is still used by HW 

#define XVBA_COMPLETED 0x00000002 ///< HW completed job on this surface 

#define XVBA_NO_ERROR_DECODE 0x00000004 ///< no decode errors 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

21 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

#define XVBA_ERROR_DECODE 0x00000008 ///< decode errors for queried surface 
 

typedef struct  

{ 

   unsigned int size; 

 

   unsigned int status_flags; 

   XVBADecodeError decode_error; 

       

} XVBA_Surface_Sync_Output; 

 

 

Status 

XVBASyncSurface ( 

 XVBA_Surface_Sync_Input  *surface_sync_input, 

 XVBA_Surface_Sync_Output  *surface_sync_output 

); 

      
 

Errors:  

 BadData - bad input data 

 

3.6.5 Transfer Decoded Frame Data 
 

Application may readback the decoded frame data for Xv and OpenGL rendering.  XVBA provides 

the XVBAGetSurface() function to copy the decoded frame data from local memory to an 

application supplied system memory buffer.  XVBA also provides the XVBATransferSurface() 

function to transfer from one XVBA surface to another.  For an OpenGL texture buffer, the 

application may call the XVBACreateGLSharedSurface() function to  hold OpenGL texture buffer as 

XVBA surface and then call the XVBATransferSurface() function to transfer the decoded data to the 

OpenGL texture buffer.  

 

3.6.5.1 XVBAGetSurface 

XVBAGetSurface function supports for YV12 system memory for Xv rendering.  It transfers the decoded 

frame data to the application supplied YV12 system memory buffer.  The application can request to 

transfer the top field, bottom field or the whole frame to the system memory.  The destination width and 

height must be equal to the source surface width and height.  In case of transferring a field, it will be 

scaled to the frame size in system memory. 

 

typedef struct { 

    unsigned int    size;          //structure size 

    void  *session; 

    void  *src_surface; 

    void  *target_buffer; 

    unsigned int target_pitch; 

    unsigned int target_width; 

    unsigned int target_height; 

    XVBA_GetSurface_Target target_parameter; 

    unsigned int reserved [4]; 

} XVBA_Get_Surface_Input; 

 

Status 

XVBAGetSurface ( 

 XVBA_Get_Surface_Input *get_surface_input   /*in*/ 

); 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

22 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

      

Errors:  

- BadValue - Invalid input data 

- BadAlloc – Intermediate surface creation failed. 

 

3.6.5.2 XVBATransferSurface 
 

XVBATransferSurface transfers one XVBA surface to another.  The application can request to transfer the 

top field, bottom field or whole frame of source surface to the destination surface.  The destination 

surface width and height must be equal to the source surface width and height.  In case of transferring a 

field, it will be scaled to the frame size in the destination. 
 

typedef struct { 

    unsigned int    size;          //structure size 

    void  *session; 

    void  *src_surface; // pointer to source XVBA surface 

    void  *target_surface; // pointer to target XVBA surface 

    XVBA_SURFACE_FLAG flag; 

    unsigned int reserved [4]; 

} XVBA_Transfer_Surface_Input; 

 

 

Status 

XVBATransferSurface ( 

 XVBA_Transfer_Surface_Input *transfer_surface_input   /*in*/ 

); 

      

Errors:  

- BadValue - Invalid input data or failed. 

 

  



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

23 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

4. Decode Data buffers  

 

XVBA revision 1 supports 4 decode buffer types for H.264, VC-1 and MPEG2 decode: 

1) XVBA_PICTURE_DESCRIPTOR_BUFFER 

2) XVBA_DATA_BUFFER 

3) XVBA_DATA_CTRL_BUFFER 

4)  XVBA_QM_BUFFER 

NOTE: XVBA compressed data buffers have a different data/bit layout for H.264, VC-1 and MPEG2.  

Please read the spec carefully and implement the appropriate buffer for every codec in XVBA. 

4.1 Picture Descriptor Buffer 
 

   XVBA compressed data type: XVBA_PICTURE_DESCRIPTOR_BUFFER 
 

Picture descriptor buffer contains information on picture size, structure, postprocessing, decode 

references, chroma format, etc. This buffer is the same for all supported codecs. 
 
typedef struct 

{ 

   //VC-1, MPEG2 bitstream references 

     void  *past_surface; 

    void  *future_surface; 

 

 unsigned int  profile;  

 unsigned int  level;  

 

 unsigned int  width_in_mb; 

 unsigned int  height_in_mb; 

 unsigned int  picture_structure; 

 

 union { 

  struct { 

   unsigned int residual_colour_transform_flag : 1; 

   unsigned int delta_pic_always_zero_flag  : 1; 

   unsigned int gaps_in_frame_num_value_allowed_flag : 1; 

   unsigned int frame_mbs_only_flag  : 1; 

   unsigned int mb_adaptive_frame_field_flag  : 1; 

   unsigned int direct_8x8_inference_flag  : 1; 

   unsigned int XVBA_avc_sps_reserved  : 26; 

  } avc; 

 

  struct { 

   unsigned int postprocflag  : 1; 

   unsigned int pulldown   : 1; 

   unsigned int interlace   : 1; 

   unsigned int tfcntrflag  : 1; 

   unsigned int finterpflag  : 1; 

   unsigned int reserved   : 1; 

   unsigned int psf   : 1; 

   unsigned int second_field  : 1; 

   unsigned int XVBA_vc1_sps_reserved : 24; 

  } vc1; 

 

  unsigned int flags; 

 } sps_info; 

 

  

 unsigned char chroma_format; 

 unsigned char avc_bit_depth_luma_minus8; 

 unsigned char avc_bit_depth_chroma_minus8; 

 unsigned char avc_log2_max_frame_num_minus4; 

 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

24 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

 unsigned char avc_pic_order_cnt_type; 

 unsigned char avc_log2_max_pic_order_cnt_lsb_minus4; 

 unsigned char avc_num_ref_frames; 

 unsigned char avc_reserved_8bit; 

 

 union { 

  struct { 

   unsigned int entropy_coding_mode_flag  : 1; 

   unsigned int pic_order_present_flag  : 1; 

   unsigned int weighted_pred_flag   : 1; 

   unsigned int weighted_bipred_idc  : 2; 

   unsigned int deblocking_filter_control_present_flag : 1; 

   unsigned int constrained_intra_pred_flag  : 1; 

   unsigned int redundant_pic_cnt_present_flag : 1; 

   unsigned int transform_8x8_mode_flag  : 1; 

   unsigned int XVBA_avc_pps_reserved  : 23; 

  } avc; 

 

  struct { 

   unsigned int panscan_flag  : 1; 

   unsigned int refdist_flag  : 1; 

   unsigned int loopfilter  : 1; 

   unsigned int fastuvmc   : 1; 

   unsigned int extended_mv  : 1; 

   unsigned int dquant   : 2; 

   unsigned int vstransform  : 1; 

   unsigned int overlap   : 1; 

   unsigned int quantizer   : 2; 

   unsigned int extended_dmv  : 1; 

   unsigned int maxbframes  : 3; 

   unsigned int rangered   : 1; 

   unsigned int syncmarker  : 1; 

   unsigned int multires   : 1; 

   unsigned int reserved   : 2; 

   unsigned int range_mapy_flag  : 1; 

   unsigned int range_mapy  : 3; 

   unsigned int range_mapuv_flag  : 1; 

   unsigned int range_mapuv  : 3; 

   unsigned int XVBA_vc1_pps_reserved : 4; 

  } vc1; 

 

  unsigned int flags; 

 } pps_info; 

 

 

 unsigned char avc_num_slice_groups_minus1;  

 unsigned char avc_slice_group_map_type; 

 unsigned char avc_num_ref_idx_l0_active_minus1; 

 unsigned char avc_num_ref_idx_l1_active_minus1; 

 

 char  avc_pic_init_qp_minus26; 

 char  avc_pic_init_qs_minus26; 

 char  avc_chroma_qp_index_offset; 

 char  avc_second_chroma_qp_index_offset; 

 

 unsigned short avc_slice_group_change_rate_minus1; 

 unsigned short avc_reserved_16bit; 

 

 unsigned int avc_frame_num; 

 unsigned int avc_frame_num_list[16]; // bit 31 is used to indicate long/short term 

 int  avc_curr_field_order_cnt_list[2]; 

 int  avc_field_order_cnt_list[16][2]; 

 

 unsigned char avc_slice_group_map[810]; 

 

 int  avc_intra_flag; 

 int  avc_reference; 

 

   int                 XVBA_reserved[14]; 

  

    } XVBAPictureDescriptor; 

   
 

  



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

25 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

 

4.1.1 Common fields of XVBAPictureDescriptor structure 
 

The fields below are common for all supported codes:  

 

profile  

 The field speci fies a subset of algorithmic features and limits that 

 shall be supported by all decoders conforming to that profile. 

 All H264 profile types are speci fied in H264/AVC1 speci fication.  

 All VC1 profile types are speci fied in VC1 speci fication.  

 AMD UVD hardware acceleration supports the following profiles 

 H264: 

  1 = Baseline profile (for H264 field profile_idc  = 66) 

  2 = Main profile (for H264 field profile_idc = 77) 

  3 = High profile (for H264 field profile_idc = 100) 

 VC1:  

  4 = Simple profile (for the VC1 field PROFILE = 0) 

  5 = Main profile (for the VC1 field PROFILE = 1) 

  6 = Advanced profile (for the VC1 field PROFILE = 3) 

 

level  

 The field speci fies rest rictions on bitstreams and hence limits on the capabilities  

 needed to decode the bitstreams. Levels are speci fied within each profile. 

 

width_in_mb 

 The field speci fies the width of each decoded picture in units of macroblocks.  

 

height_in_mb 

 The field speci fies the width of each decoded picture in units of macroblocks.  

 

picture_structure  

 The field speci fies the type of picture:  

  0 = Top field 

  1 = Bottom field 

  3 = Frame 

chroma_format 

 The field speci fies the chroma sampling relative to the luma sampling.  

 0 = monochrome 

 1 = 4:2:0 

 2 = 4:2:2 

 3 = 4:4:4 

 When chroma_format is not present, it shall be inferred to be equal to 1 (4:2:0 chroma format).  

 

avc_frame_num 

 The field is used as an identi fier for pictures. 

 In H264, it is represented by log2_max_frame_num_minus4  + 4 bits in the bitstream.  

 

avc_intra_flag 

 The field speci fies the prediction mode type in a frame/field.  

1 = the flag speci fies that picture is coded in Intra prediction mode.  It supposes that I-

frames are coded in the Intra prediction mode only.  

0 = the flag speci fies that picture may be coded in Inter prediction mode. 

 

 

 

avc_reference  

 The field speci fies whether this picture is used as the reference picture.  

 1 = this picture is a reference 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

26 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

 0 = non-reference picture 

  

 

4.1.2 H264 specific fields of XVBAPictureDescriptor structure 
 

avc_bit_depth_luma_minus8  

 The field corresponds to  bit_depth_luma_minus8 field in H263/AVC1 speci fication. 

It speci fies the bit depth of the samples of the luma array and the value of the luma quantisation parameter 

range offset,  

 BitDepthY = 8 + bit_depth_luma_minus8 

 QpBdOffsetY = 6 * bit_depth_luma_minus8 

 When bit_depth_luma_minus8 is not present, it shall be inferred to be equal to 0. 

 avc_bit_depth_luma_minus8 shall be in the range of 0 to 4, inclusive.  

 

avc_bit_depth_chroma_minus8  

 The field corresponds to  bit_depth_chroma_minus8 field in H263/AVC1 speci fication.  

It speci fies the bit depth of the samples of the chroma arrays and the value of the chroma quantisation 

parameter range offset, as speci fied by 

 BitDepthC = 8 + bit_depth_chroma_minus8 

 QpBdOffsetC = 6 * (bit_depth_chroma_minus8 + residual_colour_transform_flag)  

 When avc_bit_depth_chroma_minus8  is not present, it shall be inferred to be equal to 0.  

 avc_bit_depth_chroma_minus8 shall be in the range of 0 to 4, inclusive. 

 

avc_log2_max_frame_num_minus4  

 The field corresponds to  log2_max_frame_num_minus4 field in H263/AVC1 speci fication.  

It speci fies the value of the variable MaxFrameNum that is used in frame_num related derivations as follows:  

 MaxFrameNum = 2 power of ( log2_max_frame_num_minus4 + 4 ) 

 The value of avc_log2_max_frame_num_minus4 shall be in the range of 0 to 12, inclusive.  

 

avc_pic_order_cnt_type  

 The field corresponds to  pic_order_cnt_type field in H263/AVC1 speci fication. 

 It speci fies the method to decode picture order count (POC).  

 The value of avc_pic_order_cnt_type shall be in the range of 0 to 2, inclusive.  

 

avc_log2_max_pic_order_cnt_lsb_minus4  

 The field corresponds to  log2_max_pic_order_cnt_lsb_minus4 field in H263/AVC1 speci fication. 

 It speci fies the value of the variable MaxPicOrderCntLsb that is used  

 in the decoding process for picture order count as speci fied in subclause 8.2.1 as follows:  

 MaxPicOrderCntLsb = 2 
(log2_max_pic_order_cnt_lsb_minus4 + 4)

  

 The value of avc_log2_max_pic_order_cnt_lsb_minus4  shall be in the range of 0 to 12, inclusive.  

 

avc_num_ref_frames  

 The field corresponds to  num_ref_frames field in H263/AVC1 speci fication. 

 It speci fies the maximum number of short-term and long-term reference frames,  

 complementary reference field pairs, and non-paired reference fields that may be used  

 by the decoding process for inter prediction of any picture in the sequence.  

 num_ref_frames also determines the size of the sliding window operation.  

 The value of avc_num_ref_frames shall be in the range of 0 to MaxDpbSize, inclusive.  

 

avc_reserved_8bit 

 It is the reserved field. It must be 0.  

 

avc_num_slice_groups_minus1 

 The field corresponds to num_slice_groups_minus1 field in H263/AVC1 speci fication. 

 It speci fies the number of slice groups for a picture minus 1.  

When avc_num_slice_groups_minus1 is equal to 0, all slices of the picture belong to the same slice group.  

 0 = for H264 main and high profiles  



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

27 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

 0-7 = for H264 baseline profile 

 

avc_slice_group_map_type  

 The field corresponds to  slice_group_map_type field in H263/AVC1 speci fication. 

 It speci fies how the mapping of slice group map units to slice groups is coded.  

 The value of avc_slice_group_map_type shall be in the range of 0 to 6, inclusive.  

 

avc_num_ref_idx_l0_active_minus1 

 The field corresponds to  num_ref_idx_l0_active_minus1 field in H263/AVC1 speci fication.  

It speci fies the maximum reference index for reference picture list 0 that shall be used to decode each slice of 

the picture in which list 0 prediction is used when num_ref_idx_active_override_flag is equal to 0 for the 

slice. When MbaffFrameFlag is equal to 1, num_ref_idx_l0_active_minus1 is the maximum index value for 

the decoding of frame macroblocks and 2 * num_ref_idx_l0_active_minus1 + 1 is the maximum index value 

for the decoding of field macroblocks. 

 The value of avc_num_ref_idx_l0_active_minus1 shall be in the range of 0 to 31, inclusive.  

 

avc_num_ref_idx_l1_active_minus1 

 The field corresponds to  num_ref_idx_l1_active_minus1 field in H263/AVC1 speci fication.  

It has the same semantics as avc_num_ref_idx_l0_active_minus1 with l0 and list 0 replaced by l1 and list 1, 

respectively.  

 

avc_pic_init_qp_minus26 

 The field corresponds to  pic_init_qp_minus26 field in H263/AVC1 speci fication. 

 It speci fies the initial value minus 26 of SliceQPY for each slice.  

 The initial value is modified at the slice layer when a non-zero value of slice_qp_delta is decoded, 

 and is modified further when a non-zero value of mb_qp_delta is decoded at the macroblock layer.  

 The value of avc_pic_init_qp_minus26 shall be in the range of  (26 + QpBdOffsetY ) to +25, inclusive.  

 

avc_pic_init_qs_minus26  

 The field corresponds to  pic_init_qs_minus26 field in H263/AVC1 speci fication.  

 It speci fies the initial value minus 26 of SliceQSY for all macroblocks in SP or SI slices.  

 The initial value is modified at the slice layer when a non-zero value of slice_qs_delta is decoded.  

 The value of avc_pic_init_qs_minus26 shall be in the range of -26 to +25, inclusive.  

 

avc_chroma_qp_index_offset  

 The field corresponds to  chroma_qp_index_offset field in H263/AVC1 speci fication. 

It speci fies the offset that shall be added to QPY and QSY for addressing the table of QPC values for the Cb 

chroma component.  

 The value of avc_chroma_qp_index_offset shall be in the range of -12 to +12, inclusive. 

 

avc_second_chroma_qp_index_offset 

 The field corresponds to  second_chroma_qp_index_offset field in H263/AVC1 speci fication. 

It speci fies the offset that shall be added to QPY and QSY for addressing the table of QPC values for the Cr 

chroma component.  

 The value of avc_second_chroma_qp_index_offset shall be in the range of  12 to +12, inclusive.  

When avc_second_chroma_qp_index_offset is not present, it shall be inferred to be equal to 

avc_chroma_qp_index_offset. 

 

avc_slice_group_change_rate_minus1 

 The field corresponds to  slice_group_change_rate_minus1 field in H263/AVC1 speci fication. 

 It is used to speci fy the variable SliceGroupChangeRate.  

 SliceGroupChangeRate speci fies the multiple in number of slice group map units by 

 which the size of a slice group can change from one picture to the next.  

 The value of slice_group_change_rate_minus1 shall be in the range of 0 to PicSizeInMapUnits – 1, inclusive. 

 The SliceGroupChangeRate variable is speci fied as follows: 

 SliceGroupChangeRate = slice_group_change_rate_minus1 + 1 

 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

28 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

avc_reserved_16bit 

 Reserved field. It must be 0.  

 

avc_frame_num_list[16] 

 It is not used for now. It must be 0. 

 

avc_curr_field_order_cnt_list[2] 

 curr_field_order_cnt_list[0] corresponds to TopFieldOrderCnt in H264/ACV1 speci fication.  

 curr_field_order_cnt_list[1] corresponds to BottomFieldOrderCnt in H264/ACV1 speci fication. 

 The fields are used to determine initial picture orderings for reference pictures in the decoding of B slices  

to represent picture order di fferences between frames or fields for motion vector derivation in temporal direct 

mode, for implicit mode weighted prediction in B slices and for decoder conformance checking.  

 

avc_field_order_cnt_list[16][2] 

 It is not used for now. It must be 0. 

 

avc_slice_group_map[810] 

 It is not used for now. It must be 0. 

 

 

 

4.1.2.1 The H264 picture parameters are defined in sps_info structure:  
 

delta_pic_order_always_zero_flag  

 The field corresponds to the same field in H264/AVC1 speci fication. 

1 = speci fies that delta_pic_order_cnt[ 0 ] and delta_pic_order_cnt[ 1 ]  are not present in 

the slice headers of the sequence and shall be inferred to be equal to 0. 

0 = speci fies that delta_pic_order_cnt[ 0 ] is present in the slice headers of the sequence 

and delta_pic_order_cnt[ 1 ]  may be present in the slice headers of the sequence.  

 (See H264/ACV1 speci fication for reference) 

 

gaps_in_frame_num_value_allowed_flag  

 The field corresponds to the same field in H264/AVC1 speci fication. 

It speci fies the allowed values of frame_num and the decoding process in case of an inferred gap between 

values of frame_num. (See H264/ACV1 speci fication for reference) 

 

residual_colour_transform_flag  

 It corresponds to the same field in H264/AVC1 speci fication. 

1 = speci fies that the residual color transform is applied. 

0 = speci fies that the residual color transform is not applied.  

 When residual_colour_transform_flag is not present, it shall be inferred to be equal to 0.  

 (See H264/ACV1 speci fication for reference) 

 

frame_mbs_only_flag  

 The field corresponds to the same field in H264/AVC1 speci fication. 

1 = speci fies that every coded picture of the coded video sequence is a coded frame 

containing only frame macroblocks.  

0 = speci fies that coded pictures of the coded video sequence may either be coded fields or 

coded frames.  

 (See H264/ACV1 speci fication for reference) 

 

mb_adaptive_frame_field_flag  

 The field corresponds to the same field in H264/AVC1 speci fication. 

1 = speci fies the possible use of switching between frame and field macroblocks within 

frames.  

0 = speci fies no switching between frame and field macroblocks within a picture.  

         When mb_adaptive_frame_field_flag is not present, it shall be inferred to be equal to 0.  



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

29 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

 (See H264/ACV1 speci fication for reference) 

 

direct_8x8_inference_flag  

 The field corresponds to the same field in H264/AVC1 speci fication. 

 It speci fies the method used in the derivation process for luma motion vectors for  

 B_Skip, B_Direct_16x16 and B_Direct_8x8.  

         When frame_mbs_only_flag is equal to 0, direct_8x8_inference_flag shall be equal to 1. 

 (See H264/ACV1 speci fication for reference) 

 

XVBA_avc_sps_reserved 

 It is the reserved field. It must be 0.  

 

 

 

4.1.2.2 The H264 picture parameters are defined in pps_info structure:  
 

entropy_coding_mode_flag  

 The field corresponds to the same field in H263/AVC1 speci fication. 

 It selects the entropy decoding method.  

 0 = Exp-Golomb coded or CAVLC  

 1 = CABAC 

 

pic_order_present_flag  

 The field corresponds to the same field in H263/AVC1 speci fication. 

1 = speci fies that the picture order count related syntax elements are present in the slice 

headers. 

0 = speci fies that the picture order count related syntax elements are not present in the slice 

headers. 

 

weighted_pred_flag  

 The field corresponds to  the same field in H263/AVC1 speci fication.  

 1 = speci fies that weighted prediction shall be applied to P and SP slices.  

 0 = speci fies that weighted prediction shall not be applied to P and SP slices. 

 

weighted_bipred_idc  

 The field corresponds to  the same field in H263/AVC1 speci fication.  

 0 = the default weighted prediction shall be applied to B slices.  

 1 = explicit weighted prediction shall be applied to B slices.  

 2 = implicit weighted prediction shall be applied to B slices. 

 The value of weighted_bipred_idc shall be in the range of 0 to 2, inclusive. 

 

deblocking_filter_control_present_flag  

 The field corresponds to  the same field in H263/AVC1 speci fication.  

1 = speci fies that a set of syntax elements controlling the characteristics of the deblocking 

filter is present in the slice header.  

0 = speci fies that the set of syntax elements controlling the characteristics of the deblocking 

filter is not present in the slice headers and their inferred values are in effect.  

  

constrained_intra_pred_flag  

 The field corresponds to  the same field in H263/AVC1 speci fication.  

1 = speci fies constrained intra prediction, in which case prediction of macroblocks coded 

using Int ra macroblock prediction modes only uses residual data decoded samples from 

I or SI macroblock types. 

0 = speci fies that intra prediction allows usage of residual data and decoded samples of 

neighboring macroblocks coded using Inter macroblock prediction modes for the 

prediction of macroblocks coded using Intra macroblock prediction modes.  

 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

30 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

redundant_pic_cnt_present_flag 

 The field corresponds to the same field in H263/AVC1 speci fication. 

1 = that the redundant_pic_cnt syntax element is present in all slice headers, data partitions 

B, and data partitions C that refer (either directly or by association with a 

corresponding data partition A) to the picture parameter set.  

0 = speci fies that the redundant_pic_cnt syntax element is not present in slice headers,  data 

partitions B, and data partitions C that refer (either directly or by association with a 

corresponding data partition A) to the picture parameter set. 

 

transform_8x8_mode_flag 

 The field corresponds to the same field in H263/AVC1 speci fication. 

 1 = speci fies that the 8x8 transform decoding process may be in use.  

 0 = speci fies that the 8x8 transform decoding process is not in use.  

 When transform_8x8_mode_flag is not present, it shall be inferred to be 0.  

 

XVBA_avc_pps_reserved 

 It is the reserved field. It must be 0.  

 

 

 

 

4.1.3 VC1 specific fields of XVBAPictureDescriptor structure  
 
4.1.3.1 The VC1 picture parameters are defined in sps_info structure:  

 

postprocflag  

 The field corresponds to POSTPROC field in VC1 speci fication. 

 It is a flag that indicates whether syntax element POSTPROC is present in picture headers. 

 

pulldown 

 The field corresponds to PULLDOWN field in VC1 speci fication. 

 It is a flag that indicates whether the syntax elements RPTFRM, or TFF and RFF are present in picture 

headers. 

 

interlace 

 The field corresponds to INTERLACE field in VC1 speci fication. 

 The individual frames may be coded using the progressive or interlace syntax when INTERLACE = 1. 

 If INTERLACE = 0, pictures are coded as single frames using the progressive syntax.  

 

tfcntrflag  

 The field corresponds to TFCNTRFLAG field in VC1 speci fication. 

 It is a frame counter flag.  

1 = indicates that the syntax element TFCNTR shall be present in the advanced profile 

picture headers. 

 0 = indicates that TFCNTR shall not be present in the picture header.  

 

finterpflag  

 The field corresponds to TFCNTRFLAG field in VC1 speci fication. 

It is a frame interpolation flag that speci fies if the syntax element INTERPFRM is present in the picture 

header. 

 1 = INTERPFRM is present in picture headers. 

 0 = INTERPFRM is not present in picture headers. 

  

reserved 

 The field corresponds to RESERVED field in VC1 speci fication. 

 It is the Reserved Advanced Profile Flag . It shall be set to 1. 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

31 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

 It is used for bitstream control. 

 

psf 

 The field corresponds to PSF field in VC1 speci fication. 

 It speci fies the video source. 

1 = the video source was Progressive Segmented Frame (PsF), and the display 

process should treat the decoded frames (field-pairs) as progressive.  

0 = the display process may treat the decoded frames (field-pairs) according to the 

value of the INTERLACE syntax element. 

 

second_field 

 The field speci fies whether the picture is the second field.  

 0 = the picture is a frame or the first field.  

 1 = the picture is the second field. 

 

XVBA_vc1_sps_reserved 

 It is the reserved field. It must be 0.  

 

 

 
4.1.3.2 The VC1 picture parameters are defined in pps_info structure:  
 

panscan_flag  

 The field corresponds to the same field in VC1 speci fication. 

1 = speci fies that pan scan regions are present for pictures within that entry point 

segment. The pan scan region is a sub-region of the display region which may 

be used as an alternative presentation format. The most common application is 

to display a 4:3 sub-region of 16:9 content. 

 0 = speci fies that pan scan regions are not present.  

 

refdist_flag 

 The field corresponds to the same field in VC1 speci fication. 

 It is a Reference Frame Distance Flag.  

1 = speci fies that REFDIST syntax element is present in II, IP, PI or PP field 

picture headers. 

 0 = the REFDIST syntax element is not present.  

 

loopfilter  

 The field corresponds to  the same field in VC1 speci fication.  

 1 = speci fies that loop filtering is enabled.  

 0 = speci fies that loop filtering is not enabled. 

 If the stream PROFILE is Simple profile, the LOOPFILTER shall have the value 0.  

  

fastuvmc 

 The field corresponds to the same field in VC1 speci fication. 

It is a Fast UV Motion Compensation Flag.  It controls the subpixel interpolation and rounding of color-

di fference motion vectors. 

1 = speci fies that the color-di fference motion vectors that are at quarter pel offsets is  rounded to the 

nearest hal f or full pel positions.  

 0 = no special rounding or filtering is done for color-di fference.  

 If the stream PROFILE is Simple profile, the FASTUVMC shall have the value 0.  

 

extended_mv 

 The field corresponds to the same field in VC1 speci fication. 

 It is the Extended Motion Vector Flag.  

 It speci fies whether extended motion vectors are enabled (value 1) or disabled (value 0).  



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

32 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

 This bit shall always set to 0 for the Simple Profile.  

 For the Main Profile, the extended motion vector mode shall indicate the possibility of  

 extended motion vectors in P and B pictures. 

 

dquant 

 The field corresponds to  the same field in VC1 speci fication.  

 It speci fies whether or not the quantization step size may vary within a frame. 

0 = only one quantization step size (i.e. the frame quantization step size) is used 

per frame.  

 1 or 2 = the quantization step size may vary within the frame.  

 In Simple profile, DQUANT shall be 0. 

 In the Main profile, if MULTIRES = 1, DQUANT shall be 0. 

 

vstransform 

 The field corresponds to the same field in VC1 speci fication. 

 The speci fies whether variable-sized transform coding is enabled for the sequence.  

 1 = variable-sized transform coding shall be enabled. 

 0 = variable-sized transform coding shall not be enabled.  

 

overlap 

 The field corresponds to the same field in VC1 speci fication. 

 It speci fies whether Overlapped Transforms are used.  

 1 = Overlapped Transforms may be used. 

 0 = Overlapped Transforms is not used.  

 

quantizer  

 The field corresponds to the same fi eld in VC1 speci fication. 

 It speci fies the quantizer used for the sequence.  

 0 = Quantizer implicitly speci fied at frame level  

 1 = Quantizer explicitly speci fied at frame level 

 2 = Nonuniform quantizer used for all frames  

 3 = Uniform quantizer used for all frames 

 

extended_dmv 

 The field corresponds to the same field in VC1 speci fication. 

1 = speci fies that extended di fferential motion vector range is signaled at  the 

picture layer for the P and B pictures within the entry point segment. 

 0 = speci fies that extended di fferential motion vector range is not signaled.  

 

 

maxbframes 

 The field corresponds to the same field in VC1 speci fication. 

 It speci fies the maximum number of consecutive B frames between I or P frames.  

 0 = there are no B frames in the sequence.  

 0-7 = the number of B Frames may be present in the sequence.  

 

   

rangered 

 The field corresponds to the same field in VC1 speci fication. 

 speci fies whether range reduction is used for each frame.  

1 = there shall be a syntax element in each frame header (RANGEREDFRM) that 

indicates whether range reduction is used for that frame.  

0 = the syntax element RANGEREDFRM is not present, and range reduction shall 

not used. 

 RANGERED shall be set to zero in Simple profile.  

 

syncmarker 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

33 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

 The field corresponds to the same field in VC1 speci fication. 

 It indicates whether synchronization markers may be present in the bitstream.  

 This bit shall always be set to 0 in the simple profile. 

 In the main profile, the synchronizations markers may be present if SYNCMARKER =1, 

 and the markers shall not be present if SYNCMARKER = 0. 

 

 

multires 

 The field corresponds to the same field in VC1 speci fication. 

It is a Multiresolution Coding flag which speci fies whether the frames may be coded at  smaller resolutions 

than the speci fied frame resolution.  

 Resolution changes shall only be allowed on I pictures.  

1 = the frame level RESPIC syntax element shall be present which indicates the resolution for that 

frame. 

 0 = RESPIC shall not be present. 

 

reserved 

 The field corresponds to Reserved6 field in VC1 speci fication.  

 It shall be set to 1 and other values shall be forbidden. 

 It is used to control a video stream. 

  

range_mapy_flag 

 The field corresponds to the same field in VC1 speci fication. 

 The Range Mapping Luma Flag speci fies whether RANGE_MAPY is present in within the entry header.  

 1 = RANGE_MAPY is present in within the entry header 

 0 = RANGE_MAPY is not present in within the entry header  

 

range_mapy 

 The field corresponds to the same field in VC1 speci fication. 

 The Range Mapping Luma value shell be present if range_mapy_flag is set to 1. 

 The value of range_mapy shall be in the range of 0 to 7, inclusive.  

 If this syntax element is present, the luma components of the decoded pictures within  

 the entry point segment shall be scaled according to the formula:  

 Y[n] = CLIP ((((Y[n] – 128) * (RANGE_MAPY + 9) + 4) >> 3) + 128);  

 

range_mapuv_flag  

 The field corresponds to the same field in VC1 speci fication. 

 The Range Mapping Color-Difference Flag speci fies 

 whether RANGE_MAPUV is present in within the entry header.  

 1 = RANGE_MAPUV is present in within the ent ry header 

 0 = RANGE_MAPUV is not present in within the entry header 

 

range_mapuv 

 The field corresponds to the same field in VC1 speci fication. 

 The Range Mapping Color-Difference value shell be present if range_mapy_flag is set to 1. 

 The value of range_mapuv shall be in the range of 0 to 7, inclusive.  

 If this syntax element is present, the color-di fference components of the decoded pictures  

 within the entry point segment shall be scaled according to the formula:  

 Cb[n] = CLIP ((((Cb[n] – 128) * (RANGE_MAPUV + 9) + 4) >> 3) + 128);  

 Cr[n] = CLIP ((((Cr[n] – 128) * (RANGE_MAPUV + 9) + 4) >> 3) + 128);  

 

XVBA_vc1_pps_reserved 

 It is the reserved field. It must be 0.  

 

  



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

34 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

4.2 Data Buffer 
 

4.2.1 Bitstream decode (H.264 and VC-1) 
 

XVBA compressed data type: XVBA_DATA_BUFFER 

 

Data size/packing description of XVBA_DATA_BUFFER is in the XVBA_DATA_CTRL_BUFFER. 

XVBA_DATA_BUFFER must be 128 byte aligned.  
 

 

4.2.2 MPEG2 iDCT level decode 
 

XVBA compressed data type: XVBA_DATA_BUFFER 

 

This buffer stores residual data in the following format: 
 

typedef struct 

{ 

struct 

{ 

unsigned short  index: 15; //contains rates scan index of the coefficient within the block.  

       //cannot be greater or equal to (block width * block height) 

unsigned short  endofblock:  1;  

  } idx; 

  short     coeff;       //value of the coefficient in the block; mismatch control and 

       // clipping is host’s responsibility 

           

} XVBAMpeg2Residual; 

 

Notes:  

 If ‘endofblock’ is 1, it indicates that the current coefficient is last one in the current block. 

 XVBA mpeg2 blocks are in arbitrary ordering. 

 

4.3 Data Control Buffer or Slice Buffer 
 

4.3.1 Bitstream decode (H.264 and VC-1) 
 

XVBA compressed data type: XVBA_DATA_CTRL_BUFFER 

 
 

typedef struct  

{ 

  unsigned int  SliceBitsInBuffer; 

  unsigned int  SliceDataLocation;   

  unsigned int  SliceBytesInBuffer; 

  unsigned int  reserved[5]; 

 

} XVBA_data_ctrl; 

 

4.3.1.1 Data Control Buffer and Data Buffer Relation for H.264 and VC-1 
 

XVBA_DATA_BUFFER contains blocks of compressed bitstream data.  Decoder (host) stores the data 

blocks size/location information in XVBA_DATA_CTRL_BUFFER.  Every data block has its own 

XVBA_data_ctrl data structure. XVBA_DATA_BUFFER must be 128 byte aligned. 

 
 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

35 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

NAL 1

NAL 2

NAL 3

xvba_data_ctrl for NAL1

xvba_data_ctrl for NAL2

xvba_data_ctrl for NAL3

Padding to have the data 

buffer 128 byte aligned

XvBA_DATA_BUFFER 

for H.264

XvBA_DATA_CTRL_BUFFER 

for H.264

 
 

XVBA_DATA_BUFFER and XVBA_DATA_CTRL_BUFFER example for h.264 
 

 

4.3.2 MPEG2 iDCT level decode 
 

XVBA compressed data type: XVBA_DATA_CTRL_BUFFER 

 

This buffer stores macroblock information for the mpeg2 stream.  There are 2 different structures: one 

for the I and the other for the non-I macroblocks.  Host builds XVBA data control buffer usint 

appropriate structure for every macroblock: Intra macroblocks shall use XVBA_mpeg2_intra_mb, where 

non-Intra macroblocks (P and B) shall use XVBA_mpeg2_nonintra_mb. 
 

 

// define for motion_type 

#define XVBA_PREDICTION_FIELD  0x01 

#define XVBA_PREDICTION_FRAME  0x02 

#define XVBA_PREDICTION_DUAL_PRIME 0x03 

#define XVBA_PREDICTION_16x8  0x02 

#define XVBA_SECOND_FIELD  0x00000004 

 

Motion vectors: 
typedef struct  

{ 

  short horizontal; 

  short vertical;                  

} XVBAMpeg2MV; 

 

 

Intra MB: 
typedef struct 

{ 

  unsigned short   mb_address; 

  struct  

  { 

    unsigned short  mb_intra   : 1; 

    unsigned short  motion_fw   : 1; 

    unsigned short  motion_back   : 1; 

    unsigned short  reserved2   : 2; 

    unsigned short  field_residual  : 1; 

    unsigned short  mb_scan_mode   : 2; 

    unsigned short  motion_type  : 2; 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

36 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

    unsigned short  reserved1   : 2; 

    unsigned short  motion_vector_sel0  : 1; 

    unsigned short  motion_vector_sel1  : 1; 

    unsigned short  motion_vector_sel2  : 1; 

    unsigned short  motion_vector_sel3  : 1; 

  } mpeg2data1; 

 

  struct  

  { 

    unsigned int  mb_data_resid_location : 24; 

    unsigned int  skipped_mb   : 8; 

  } mpeg2data2; 

   

  unsigned short   pattern_code; 

  unsigned char   numcoeff[6]; 

 

} XVBAMpeg2IntraMB; 

 

 

Non-Intra MB: 
typedef struct 

{ 

  unsigned short   mb_address; 

  struct  

  { 

    unsigned short  mb_intra   : 1; 

    unsigned short  motion_fw   : 1; 

    unsigned short  motion_back   : 1; 

    unsigned short  reserved2   : 2; 

    unsigned short  field_residual  : 1; 

    unsigned short  mb_scan_mode   : 2; 

    unsigned short  motion_type  : 2; 

    unsigned short  reserved1   : 2; 

    unsigned short  motion_vector_sel0  : 1; 

    unsigned short  motion_vector_sel1  : 1; 

    unsigned short  motion_vector_sel2  : 1; 

    unsigned short  motion_vector_sel3  : 1; 

  } mpeg2data1; 

 

  struct  

  { 

    unsigned int  mb_data_resid_location : 24; 

    unsigned int  skipped_mb   : 8; 

  } mpeg2data2; 

   

  unsigned short   pattern_code; 

  unsigned char   numcoeff[6]; 

 

  XVBAMpeg2MV  motion_vector[4]; 

 

} XVBAMpeg2NonIntraMB; 

 

 

4.4 QM Buffer 
 

4.4.1 Bitstream decode (H.264 and VC-1) 
 

XVBA compressed data type: XVBA_QM_BUFFER 

 

 Used for H.264 only in XVBA version 1. XVBA_QM_BUFFER contains quantization matrix data.  

 
typedef struct  

{ 

  unsigned char   bScalingLists4x4[6][16]; 

  unsigned char   bScalingLists8x8[2][64]; 

 

} XVBAQuantMatrixAVC; 

 

 



 

 
EDIT DATE 

 

10 February, 2011 

DOCUMENT_REV.-NUM. 

Revision 0.74.01-AES-2 
PAGE 

 

37 of 37 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

 
 

4.4.2 MPEG2 iDCT level decode 
 

Not used for XVBA MPEG2 iDCT level decoding.  

 

 

 


