Float objects represent inexact real numbers using the native architecture's double-precision floating point representation.
Return the modulo after division of flt by other.
6543.21.modulo(137) #=> 104.21 6543.21.modulo(137.24) #=> 92.9299999999996
static VALUE
flo_mod(VALUE x, VALUE y)
{
double fy, mod;
switch (TYPE(y)) {
case T_FIXNUM:
fy = (double)FIX2LONG(y);
break;
case T_BIGNUM:
fy = rb_big2dbl(y);
break;
case T_FLOAT:
fy = RFLOAT_VALUE(y);
break;
default:
return rb_num_coerce_bin(x, y, '%');
}
flodivmod(RFLOAT_VALUE(x), fy, 0, &mod);
return DBL2NUM(mod);
}
Returns a new float which is the product of float and other.
static VALUE
flo_mul(VALUE x, VALUE y)
{
switch (TYPE(y)) {
case T_FIXNUM:
return DBL2NUM(RFLOAT_VALUE(x) * (double)FIX2LONG(y));
case T_BIGNUM:
return DBL2NUM(RFLOAT_VALUE(x) * rb_big2dbl(y));
case T_FLOAT:
return DBL2NUM(RFLOAT_VALUE(x) * RFLOAT_VALUE(y));
default:
return rb_num_coerce_bin(x, y, '*');
}
}
Raises float the other power.
2.0**3 #=> 8.0
static VALUE
flo_pow(VALUE x, VALUE y)
{
switch (TYPE(y)) {
case T_FIXNUM:
return DBL2NUM(pow(RFLOAT_VALUE(x), (double)FIX2LONG(y)));
case T_BIGNUM:
return DBL2NUM(pow(RFLOAT_VALUE(x), rb_big2dbl(y)));
case T_FLOAT:
{
double dx = RFLOAT_VALUE(x);
double dy = RFLOAT_VALUE(y);
if (dx < 0 && dy != round(dy))
return rb_funcall(rb_complex_raw1(x), rb_intern("**"), 1, y);
return DBL2NUM(pow(dx, dy));
}
default:
return rb_num_coerce_bin(x, y, rb_intern("**"));
}
}
Returns a new float which is the sum of float and other.
static VALUE
flo_plus(VALUE x, VALUE y)
{
switch (TYPE(y)) {
case T_FIXNUM:
return DBL2NUM(RFLOAT_VALUE(x) + (double)FIX2LONG(y));
case T_BIGNUM:
return DBL2NUM(RFLOAT_VALUE(x) + rb_big2dbl(y));
case T_FLOAT:
return DBL2NUM(RFLOAT_VALUE(x) + RFLOAT_VALUE(y));
default:
return rb_num_coerce_bin(x, y, '+');
}
}
Returns a new float which is the difference of float and other.
static VALUE
flo_minus(VALUE x, VALUE y)
{
switch (TYPE(y)) {
case T_FIXNUM:
return DBL2NUM(RFLOAT_VALUE(x) - (double)FIX2LONG(y));
case T_BIGNUM:
return DBL2NUM(RFLOAT_VALUE(x) - rb_big2dbl(y));
case T_FLOAT:
return DBL2NUM(RFLOAT_VALUE(x) - RFLOAT_VALUE(y));
default:
return rb_num_coerce_bin(x, y, '-');
}
}
Returns float, negated.
static VALUE
flo_uminus(VALUE flt)
{
return DBL2NUM(-RFLOAT_VALUE(flt));
}
Returns a new float which is the result of dividing float by other.
static VALUE
flo_div(VALUE x, VALUE y)
{
long f_y;
double d;
switch (TYPE(y)) {
case T_FIXNUM:
f_y = FIX2LONG(y);
return DBL2NUM(RFLOAT_VALUE(x) / (double)f_y);
case T_BIGNUM:
d = rb_big2dbl(y);
return DBL2NUM(RFLOAT_VALUE(x) / d);
case T_FLOAT:
return DBL2NUM(RFLOAT_VALUE(x) / RFLOAT_VALUE(y));
default:
return rb_num_coerce_bin(x, y, '/');
}
}
true if flt is less than real.
static VALUE
flo_lt(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
switch (TYPE(y)) {
case T_FIXNUM:
b = (double)FIX2LONG(y);
break;
case T_BIGNUM:
b = rb_big2dbl(y);
break;
case T_FLOAT:
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(b)) return Qfalse;
#endif
break;
default:
return rb_num_coerce_relop(x, y, '<');
}
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a)) return Qfalse;
#endif
return (a < b)?Qtrue:Qfalse;
}
true if flt is less than or equal to real.
static VALUE
flo_le(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
switch (TYPE(y)) {
case T_FIXNUM:
b = (double)FIX2LONG(y);
break;
case T_BIGNUM:
b = rb_big2dbl(y);
break;
case T_FLOAT:
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(b)) return Qfalse;
#endif
break;
default:
return rb_num_coerce_relop(x, y, rb_intern("<="));
}
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a)) return Qfalse;
#endif
return (a <= b)?Qtrue:Qfalse;
}
Returns -1, 0, +1 or nil depending on whether flt is less than, equal to, or greater than real. This is the basis for the tests in Comparable.
static VALUE
flo_cmp(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
if (isnan(a)) return Qnil;
switch (TYPE(y)) {
case T_FIXNUM:
b = (double)FIX2LONG(y);
break;
case T_BIGNUM:
if (isinf(a)) {
if (a > 0.0) return INT2FIX(1);
else return INT2FIX(-1);
}
b = rb_big2dbl(y);
break;
case T_FLOAT:
b = RFLOAT_VALUE(y);
break;
default:
if (isinf(a) && (!rb_respond_to(y, rb_intern("infinite?")) ||
!RTEST(rb_funcall(y, rb_intern("infinite?"), 0, 0)))) {
if (a > 0.0) return INT2FIX(1);
return INT2FIX(-1);
}
return rb_num_coerce_cmp(x, y, rb_intern("<=>"));
}
return rb_dbl_cmp(a, b);
}
Returns true only if obj has the same value as flt. Contrast this with Float#eql?, which requires obj to be a Float.
1.0 == 1 #=> true
static VALUE
flo_eq(VALUE x, VALUE y)
{
volatile double a, b;
switch (TYPE(y)) {
case T_FIXNUM:
b = (double)FIX2LONG(y);
break;
case T_BIGNUM:
b = rb_big2dbl(y);
break;
case T_FLOAT:
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(b)) return Qfalse;
#endif
break;
default:
return num_equal(x, y);
}
a = RFLOAT_VALUE(x);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a)) return Qfalse;
#endif
return (a == b)?Qtrue:Qfalse;
}
Returns true only if obj has the same value as flt. Contrast this with Float#eql?, which requires obj to be a Float.
1.0 == 1 #=> true
static VALUE
flo_eq(VALUE x, VALUE y)
{
volatile double a, b;
switch (TYPE(y)) {
case T_FIXNUM:
b = (double)FIX2LONG(y);
break;
case T_BIGNUM:
b = rb_big2dbl(y);
break;
case T_FLOAT:
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(b)) return Qfalse;
#endif
break;
default:
return num_equal(x, y);
}
a = RFLOAT_VALUE(x);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a)) return Qfalse;
#endif
return (a == b)?Qtrue:Qfalse;
}
true if flt is greater than real.
static VALUE
flo_gt(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
switch (TYPE(y)) {
case T_FIXNUM:
b = (double)FIX2LONG(y);
break;
case T_BIGNUM:
b = rb_big2dbl(y);
break;
case T_FLOAT:
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(b)) return Qfalse;
#endif
break;
default:
return rb_num_coerce_relop(x, y, '>');
}
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a)) return Qfalse;
#endif
return (a > b)?Qtrue:Qfalse;
}
true if flt is greater than or equal to real.
static VALUE
flo_ge(VALUE x, VALUE y)
{
double a, b;
a = RFLOAT_VALUE(x);
switch (TYPE(y)) {
case T_FIXNUM:
b = (double)FIX2LONG(y);
break;
case T_BIGNUM:
b = rb_big2dbl(y);
break;
case T_FLOAT:
b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(b)) return Qfalse;
#endif
break;
default:
return rb_num_coerce_relop(x, y, rb_intern(">="));
}
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a)) return Qfalse;
#endif
return (a >= b)?Qtrue:Qfalse;
}
Returns the absolute value of flt.
(-34.56).abs #=> 34.56 -34.56.abs #=> 34.56
static VALUE
flo_abs(VALUE flt)
{
double val = fabs(RFLOAT_VALUE(flt));
return DBL2NUM(val);
}
Returns 0 if the value is positive, pi otherwise.
static VALUE
float_arg(VALUE self)
{
if (isnan(RFLOAT_VALUE(self)))
return self;
if (f_tpositive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
Returns 0 if the value is positive, pi otherwise.
static VALUE
float_arg(VALUE self)
{
if (isnan(RFLOAT_VALUE(self)))
return self;
if (f_tpositive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
Returns the smallest Integer greater than or equal to flt.
1.2.ceil #=> 2 2.0.ceil #=> 2 (-1.2).ceil #=> -1 (-2.0).ceil #=> -2
static VALUE
flo_ceil(VALUE num)
{
double f = ceil(RFLOAT_VALUE(num));
long val;
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = (long)f;
return LONG2FIX(val);
}
MISSING: documentation
static VALUE
flo_coerce(VALUE x, VALUE y)
{
return rb_assoc_new(rb_Float(y), x);
}
Returns the denominator (always positive). The result is machine dependent.
See numerator.
static VALUE
float_denominator(VALUE self)
{
double d = RFLOAT_VALUE(self);
if (isinf(d) || isnan(d))
return INT2FIX(1);
return rb_call_super(0, 0);
}
See Numeric#divmod.
static VALUE
flo_divmod(VALUE x, VALUE y)
{
double fy, div, mod;
volatile VALUE a, b;
switch (TYPE(y)) {
case T_FIXNUM:
fy = (double)FIX2LONG(y);
break;
case T_BIGNUM:
fy = rb_big2dbl(y);
break;
case T_FLOAT:
fy = RFLOAT_VALUE(y);
break;
default:
return rb_num_coerce_bin(x, y, rb_intern("divmod"));
}
flodivmod(RFLOAT_VALUE(x), fy, &div, &mod);
a = dbl2ival(div);
b = DBL2NUM(mod);
return rb_assoc_new(a, b);
}
Returns true only if obj is a Float with the same value as flt. Contrast this with Float#==, which performs type conversions.
1.0.eql?(1) #=> false
static VALUE
flo_eql(VALUE x, VALUE y)
{
if (TYPE(y) == T_FLOAT) {
double a = RFLOAT_VALUE(x);
double b = RFLOAT_VALUE(y);
#if defined(_MSC_VER) && _MSC_VER < 1300
if (isnan(a) || isnan(b)) return Qfalse;
#endif
if (a == b)
return Qtrue;
}
return Qfalse;
}
Returns float / numeric.
static VALUE
flo_quo(VALUE x, VALUE y)
{
return rb_funcall(x, '/', 1, y);
}
Returns true if flt is a valid IEEE floating point number (it is not infinite, and nan? is false).
static VALUE
flo_is_finite_p(VALUE num)
{
double value = RFLOAT_VALUE(num);
#if HAVE_FINITE
if (!finite(value))
return Qfalse;
#else
if (isinf(value) || isnan(value))
return Qfalse;
#endif
return Qtrue;
}
Returns the largest integer less than or equal to flt.
1.2.floor #=> 1 2.0.floor #=> 2 (-1.2).floor #=> -2 (-2.0).floor #=> -2
static VALUE
flo_floor(VALUE num)
{
double f = floor(RFLOAT_VALUE(num));
long val;
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = (long)f;
return LONG2FIX(val);
}
Returns a hash code for this float.
static VALUE
flo_hash(VALUE num)
{
double d;
st_index_t hash;
d = RFLOAT_VALUE(num);
/* normalize -0.0 to 0.0 */
if (d == 0.0) d = 0.0;
hash = rb_memhash(&d, sizeof(d));
return LONG2FIX(hash);
}
Returns nil, -1, or +1 depending on whether flt is finite, -infinity, or +infinity.
(0.0).infinite? #=> nil (-1.0/0.0).infinite? #=> -1 (+1.0/0.0).infinite? #=> 1
static VALUE
flo_is_infinite_p(VALUE num)
{
double value = RFLOAT_VALUE(num);
if (isinf(value)) {
return INT2FIX( value < 0 ? -1 : 1 );
}
return Qnil;
}
Returns the absolute value of flt.
(-34.56).abs #=> 34.56 -34.56.abs #=> 34.56
static VALUE
flo_abs(VALUE flt)
{
double val = fabs(RFLOAT_VALUE(flt));
return DBL2NUM(val);
}
Return the modulo after division of flt by other.
6543.21.modulo(137) #=> 104.21 6543.21.modulo(137.24) #=> 92.9299999999996
static VALUE
flo_mod(VALUE x, VALUE y)
{
double fy, mod;
switch (TYPE(y)) {
case T_FIXNUM:
fy = (double)FIX2LONG(y);
break;
case T_BIGNUM:
fy = rb_big2dbl(y);
break;
case T_FLOAT:
fy = RFLOAT_VALUE(y);
break;
default:
return rb_num_coerce_bin(x, y, '%');
}
flodivmod(RFLOAT_VALUE(x), fy, 0, &mod);
return DBL2NUM(mod);
}
Returns true if flt is an invalid IEEE floating point number.
a = -1.0 #=> -1.0 a.nan? #=> false a = 0.0/0.0 #=> NaN a.nan? #=> true
static VALUE
flo_is_nan_p(VALUE num)
{
double value = RFLOAT_VALUE(num);
return isnan(value) ? Qtrue : Qfalse;
}
Returns the numerator. The result is machine dependent.
For example:
n = 0.3.numerator #=> 5404319552844595 d = 0.3.denominator #=> 18014398509481984 n.fdiv(d) #=> 0.3
static VALUE
float_numerator(VALUE self)
{
double d = RFLOAT_VALUE(self);
if (isinf(d) || isnan(d))
return self;
return rb_call_super(0, 0);
}
Returns 0 if the value is positive, pi otherwise.
static VALUE
float_arg(VALUE self)
{
if (isnan(RFLOAT_VALUE(self)))
return self;
if (f_tpositive_p(self))
return INT2FIX(0);
return rb_const_get(rb_mMath, id_PI);
}
Returns float / numeric.
static VALUE
flo_quo(VALUE x, VALUE y)
{
return rb_funcall(x, '/', 1, y);
}
Returns a simpler approximation of the value (flt-|eps| <= result <= flt+|eps|). if eps is not given, it will be chosen automatically.
For example:
0.3.rationalize #=> (3/10) 1.333.rationalize #=> (1333/1000) 1.333.rationalize(0.01) #=> (4/3)
static VALUE
float_rationalize(int argc, VALUE *argv, VALUE self)
{
VALUE e, a, b, p, q;
if (f_negative_p(self))
return f_negate(float_rationalize(argc, argv, f_abs(self)));
rb_scan_args(argc, argv, "01", &e);
if (argc != 0) {
e = f_abs(e);
a = f_sub(self, e);
b = f_add(self, e);
}
else {
VALUE f, n;
float_decode_internal(self, &f, &n);
if (f_zero_p(f) || f_positive_p(n))
return rb_rational_new1(f_lshift(f, n));
#if FLT_RADIX == 2
a = rb_rational_new2(f_sub(f_mul(TWO, f), ONE),
f_lshift(ONE, f_sub(ONE, n)));
b = rb_rational_new2(f_add(f_mul(TWO, f), ONE),
f_lshift(ONE, f_sub(ONE, n)));
#else
a = rb_rational_new2(f_sub(f_mul(INT2FIX(FLT_RADIX), f),
INT2FIX(FLT_RADIX - 1)),
f_expt(INT2FIX(FLT_RADIX), f_sub(ONE, n)));
b = rb_rational_new2(f_add(f_mul(INT2FIX(FLT_RADIX), f),
INT2FIX(FLT_RADIX - 1)),
f_expt(INT2FIX(FLT_RADIX), f_sub(ONE, n)));
#endif
}
if (f_eqeq_p(a, b))
return f_to_r(self);
nurat_rationalize_internal(a, b, &p, &q);
return rb_rational_new2(p, q);
}
Rounds flt to a given precision in decimal digits (default 0 digits). Precision may be negative. Returns a floating point number when ndigits is more than zero.
1.4.round #=> 1 1.5.round #=> 2 1.6.round #=> 2 (-1.5).round #=> -2 1.234567.round(2) #=> 1.23 1.234567.round(3) #=> 1.235 1.234567.round(4) #=> 1.2346 1.234567.round(5) #=> 1.23457 34567.89.round(-5) #=> 0 34567.89.round(-4) #=> 30000 34567.89.round(-3) #=> 35000 34567.89.round(-2) #=> 34600 34567.89.round(-1) #=> 34570 34567.89.round(0) #=> 34568 34567.89.round(1) #=> 34567.9 34567.89.round(2) #=> 34567.89 34567.89.round(3) #=> 34567.89
static VALUE
flo_round(int argc, VALUE *argv, VALUE num)
{
VALUE nd;
double number, f;
int ndigits = 0, i;
long val;
if (argc > 0 && rb_scan_args(argc, argv, "01", &nd) == 1) {
ndigits = NUM2INT(nd);
}
number = RFLOAT_VALUE(num);
f = 1.0;
i = abs(ndigits);
while (--i >= 0)
f = f*10.0;
if (isinf(f)) {
if (ndigits < 0) number = 0;
}
else {
if (ndigits < 0) {
double absnum = fabs(number);
if (absnum < f) return INT2FIX(0);
if (!FIXABLE(number)) {
VALUE f10 = int_pow(10, -ndigits);
VALUE n10 = f10;
if (number < 0) {
extern VALUE rb_big_uminus(VALUE x);
f10 = FIXNUM_P(f10) ? fix_uminus(f10) : rb_big_uminus(f10);
}
num = rb_big_idiv(rb_dbl2big(absnum), n10);
return FIXNUM_P(num) ? fix_mul(num, f10) : rb_big_mul(num, f10);
}
number /= f;
}
else number *= f;
number = round(number);
if (ndigits < 0) number *= f;
else number /= f;
}
if (ndigits > 0) return DBL2NUM(number);
if (!FIXABLE(number)) {
return rb_dbl2big(number);
}
val = (long)number;
return LONG2FIX(val);
}
As flt is already a float, returns self.
static VALUE
flo_to_f(VALUE num)
{
return num;
}
Returns flt truncated to an Integer.
static VALUE
flo_truncate(VALUE num)
{
double f = RFLOAT_VALUE(num);
long val;
if (f > 0.0) f = floor(f);
if (f < 0.0) f = ceil(f);
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = (long)f;
return LONG2FIX(val);
}
Returns flt truncated to an Integer.
static VALUE
flo_truncate(VALUE num)
{
double f = RFLOAT_VALUE(num);
long val;
if (f > 0.0) f = floor(f);
if (f < 0.0) f = ceil(f);
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = (long)f;
return LONG2FIX(val);
}
Returns the value as a rational.
NOTE: 0.3.to_r isn’t the same as ‘0.3’.to_r. The latter is equivalent to ‘3/10’.to_r, but the former isn’t so.
For example:
2.0.to_r #=> (2/1) 2.5.to_r #=> (5/2) -0.75.to_r #=> (-3/4) 0.0.to_r #=> (0/1)
static VALUE
float_to_r(VALUE self)
{
VALUE f, n;
float_decode_internal(self, &f, &n);
#if FLT_RADIX == 2
{
long ln = FIX2LONG(n);
if (ln == 0)
return f_to_r(f);
if (ln > 0)
return f_to_r(f_lshift(f, n));
ln = -ln;
return rb_rational_new2(f, f_lshift(ONE, INT2FIX(ln)));
}
#else
return f_to_r(f_mul(f, f_expt(INT2FIX(FLT_RADIX), n)));
#endif
}
Returns a string containing a representation of self. As well as a fixed or exponential form of the number, the call may return “NaN”, “Infinity”, and “-Infinity”.
static VALUE
flo_to_s(VALUE flt)
{
char *ruby_dtoa(double d_, int mode, int ndigits, int *decpt, int *sign, char **rve);
enum {decimal_mant = DBL_MANT_DIG-DBL_DIG};
enum {float_dig = DBL_DIG+1};
char buf[float_dig + (decimal_mant + CHAR_BIT - 1) / CHAR_BIT + 10];
double value = RFLOAT_VALUE(flt);
VALUE s;
char *p, *e;
int sign, decpt, digs;
if (isinf(value))
return rb_usascii_str_new2(value < 0 ? "-Infinity" : "Infinity");
else if (isnan(value))
return rb_usascii_str_new2("NaN");
p = ruby_dtoa(value, 0, 0, &decpt, &sign, &e);
s = sign ? rb_usascii_str_new_cstr("-") : rb_usascii_str_new(0, 0);
if ((digs = (int)(e - p)) >= (int)sizeof(buf)) digs = (int)sizeof(buf) - 1;
memcpy(buf, p, digs);
xfree(p);
if (decpt > 0) {
if (decpt < digs) {
memmove(buf + decpt + 1, buf + decpt, digs - decpt);
buf[decpt] = '.';
rb_str_cat(s, buf, digs + 1);
}
else if (decpt - digs < float_dig) {
long len;
char *ptr;
rb_str_cat(s, buf, digs);
rb_str_resize(s, (len = RSTRING_LEN(s)) + decpt - digs + 2);
ptr = RSTRING_PTR(s) + len;
if (decpt > digs) {
memset(ptr, '0', decpt - digs);
ptr += decpt - digs;
}
memcpy(ptr, ".0", 2);
}
else {
goto exp;
}
}
else if (decpt > -4) {
long len;
char *ptr;
rb_str_cat(s, "0.", 2);
rb_str_resize(s, (len = RSTRING_LEN(s)) - decpt + digs);
ptr = RSTRING_PTR(s);
memset(ptr += len, '0', -decpt);
memcpy(ptr -= decpt, buf, digs);
}
else {
exp:
if (digs > 1) {
memmove(buf + 2, buf + 1, digs - 1);
}
else {
buf[2] = '0';
digs++;
}
buf[1] = '.';
rb_str_cat(s, buf, digs + 1);
rb_str_catf(s, "e%+03d", decpt - 1);
}
return s;
}
Returns flt truncated to an Integer.
static VALUE
flo_truncate(VALUE num)
{
double f = RFLOAT_VALUE(num);
long val;
if (f > 0.0) f = floor(f);
if (f < 0.0) f = ceil(f);
if (!FIXABLE(f)) {
return rb_dbl2big(f);
}
val = (long)f;
return LONG2FIX(val);
}